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ABSTRACT
Astragalus edulis (Fabaceae) is an endangered annual species from the western

Mediterranean region that colonized the SE Iberian Peninsula, NE and SWMorocco,

and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although

in Spain some conservation measures have been adopted, it is still necessary to

develop an appropriate management plan to preserve genetic diversity across the

entire distribution area of the species. Our main objective was to use population

genetics as well as ecological and phylogeographic data to select Relevant Genetic

Units for Conservation (RGUCs) as the first step in designing conservation plans for

A. edulis. We identified six RGUCs for in situ conservation, based on estimations of

population genetic structure and probabilities of loss of rare alleles. Additionally,

further population parameters, i.e. occupation area, population size, vulnerability,

legal status of the population areas, and the historical haplotype distribution, were

considered in order to establish which populations deserve conservation priority.

Three populations from the Iberian Peninsula, two fromMorocco, and one from the

Canary Islands represent the total genetic diversity of the species and the rarest allelic

variation. Ex situ conservation is recommended to complement the preservation of

A. edulis, given that effective in situ population protection is not feasible in all cases.

The consideration of complementary phylogeographic and ecological data is useful

for management efforts to preserve the evolutionary potential of the species.

Subjects Biodiversity, Biogeography, Conservation biology, Genetics, Plant science

Keywords Conservation priorities, Relevant genetic units for conservation, Phylogeography,

Threatened species, cpDNA sequencing, AFLPs

INTRODUCTION
Although one of the central concepts in biodiversity conservation is that genetic diversity

is crucial to ensure the survival of species, until now the conservation of plant genetic

resources has received less attention than it deserves. Plant-conservation strategies have

been commonly based on general premises, leading to more or less standardized systems

for evaluating the extinction risks of the species (Moraes et al., 2014). However, plant

species differ enormously in biological traits and environmental requirements, making it
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unrealistic to apply a single system to all species. Recent years have seen increasing efforts

to improve both in situ and ex situ conservation methods, which in theory would foster

dynamic conservation of plant species and populations (Volis & Blecher, 2010; Heywood,

2014). Plant genetic diversity is spatially structured at different scales (e.g. geographical

areas, populations, or among neighbouring individuals) (Engelhardt, Lloyd & Neel, 2014)

as a result of environmental influences, life-history traits, and the demographic past

history of the species. Therefore, management schemes for conservation often require an

understanding of population dynamics and knowledge of relative levels of genetic

diversity, within species genetic structure, as well as within- and among-population

genetic differentiation in order to focus efforts on specific populations needing recovery

(Haig, 1998; Pérez-Collazos, Segarra-Moragues & Catalán, 2008).

Several estimators have been assayed to answer the question of which and how many

populations deserve conservation priority, such as: Evolutionary Significant Units (ESUs;

Ryder, 1986); Management Units (MUs; Moritz, 1994); Operational Conservation Units

(OCUs; Doadrio, Perdices & Machordom, 1996); Fundamental Geographic and

Evolutionary Units (FGEUs; Riddler & Hafner, 1999); Functional Conservation Units

(FCUs; Maes et al., 2004), among others (see also Pérez-Collazos, Segarra-Moragues &

Catalán, 2008; Domı́nguez-Domı́nguez & Vázquez-Domı́nguez, 2009). Fraser &

Bernatchez (2001) reviewed the different concepts of ESUs (the most prominent estimator

among those previously mentioned), concluding that differing criteria would work more

dynamically than others and can be used alone or in combination depending on the

situation. Pérez-Collazos, Segarra-Moragues & Catalán (2008), partially based on

Caujapé-Castells & Pedrola-Monfort (2004), as well as on the premises established by

Ciofi et al. (1999), introduced the concept of Relevant Genetic Units for Conservation

(RGUCs), which was subsequently used to propose sampling strategies for species such as

Boleum asperum Desv. (Pérez-Collazos, Segarra-Moragues & Catalán, 2008) and Borderea

pyrenaica Miégev. (Segarra-Moragues & Catalán, 2010). This approach combines two

methods that use genetic data (considering both usual and rare alleles) to estimate the

minimum number of conservation units (often corresponding to populations) that

should be targeted for an adequate representation of the total (or partial) genetic

variability of a threatened species, as well as a way to select among all units (i.e.

populations) which contain a singular or rare allelic composition. A list of preferred

sampling areas (PSA) indicating the geographical ranges with higher probabilities of

capturing a particular rare allele is finally established, helping to identify RGUCs and

therefore prioritize particular populations, as well as sampling for ex situ conservation.

This method helps identify the most singular populations, based on the idea that rare

alleles are essential in conservation because they represent unique evolutionary products

that could provide the species with advantageous properties to cope with eventual

environmental shifts. Thus, collection designs oriented to sampling rare alleles reinforce

declining populations and may aid the survival of reintroduced plants (Bengtsson, Weibull

& Ghatnekar, 1995; Pérez-Collazos, Segarra-Moragues & Catalán, 2008). One of the main

advantages of this genetic conservation approach is that it objectively prioritizes particular

plant populations in low-extinction-risk categories (Segarra-Moragues & Catalán, 2010),

Peñas et al. (2016), PeerJ, DOI 10.7717/peerj.1474 2/20

http://dx.doi.org/10.7717/peerj.1474
https://peerj.com/


particularly in taxa that have many populations and individuals, making active protection

and monitoring of the entire distribution area of the species difficult or unaffordable.

The species selected for this study Astragalus edulis Bunge (Fabaceae), is an annual

plant that inhabits semidesertic areas of south-eastern Spain, western North Africa, and

the Canary Islands (Fuerteventura and Lanzarote) (Peñas, 2004; Reyes-Betancort et al.,

2005). It is a threatened species evaluated as Endangered (EN) in Spain. Despite its

relatively wide distribution area, only a few populations remain, these being highly

fragmented. Habitat alteration has been cited as a major threat to this species (Peñas,

2004). Specifically, the abandonment of traditional agricultural practices, overgrazing, and

the habitat depletion, caused by the spread of greenhouses, may have had severely negative

consequences for species survival (Benito et al., 2009). This species represents an ideal

model to test the utility of RGUC identification as an affordable way to conserve taxa that

have highly fragmented populations, some of them with many individuals, but they are

under extinction-risk categories.

Our specific aims are: (1) to evaluate the distribution of the genetic diversity among the

different populations, and/or geographical areas; (2) to assess the number of populations

that should be sampled or preserved in order to establish a representative percentage of

the total genetic variation of A. edulis; (3) to identify which populations should be

prioritized to better represent the genetic singularity and geographic variability for both

ex situ and in situ conservation.

MATERIALS AND METHODS
Studied species
Astragalus edulis Bunge (Fabaceae) is a short-lived therophytic, hermaphroditic plant.

Until now, no information has been available on population sizes, except for the rough

estimates by Peñas (2004), indicating that ca. 226,000 individuals were present in

SE Spain in 2003. This estimate also indicated a noticeable inter-annual fluctuation

in population sizes (number of individuals) and reproductive success (Peñas, 2004;

Reyes-Betancort et al., 2005). The reproductive biology of the species is poorly known;

it shows an entomophilous pollination syndrome, lacking asexual reproduction as well as

evident adaptations to long-distance dispersal, but there is no information available on its

pollination biology or dispersal agents. Its habitat is restricted to grasslands on poor

sandy soils, resulting from erosion or deposition of volcanic or schistose rocks in

semiarid areas of the western Mediterranean region (Peñas, 2004; Reyes-Betancort et al.,

2005) (Fig. 1).

Astragalus edulis is rare (i.e. constantly sparse in a specific habitat but over a large range;

according to Rabinowitz, 1981) and threatened species evaluated as Endangered (EN) in

Spain, and consequently included in the Spanish national and regional red lists

(Bañares et al., 2004), as well as in the Andalusian (southern Spain) red list

(Cabezudo et al., 2005). Also, some populations in Spain are included in Natura 2000

network (Special Areas of Conservation, Council Directive 92/43/EEC) and in Regional

Network of Natural Protected areas of Andalusia (southern Spain), while the areas

occupied by the species in Canary Islands and Morocco lack legal protection.

Peñas et al. (2016), PeerJ, DOI 10.7717/peerj.1474 3/20

http://dx.doi.org/10.7717/peerj.1474
https://peerj.com/


Plant material for DNA study
We collected fresh leaf tissue from 360 individuals belonging to 17 populations; 6 from the

Iberian Peninsula (AE1 to AE6), 8 from Morocco (AE7 to AE14) and 3 from the Canary

Islands (AE15 to AE17), spanning the entire distribution range of the species (Table 1;

Fig. 1). We considered different populations when individual are more than 1 km apart.

We aimed to collect 25 individuals per population whenever possible but due to small

population sizes in some cases the final number of individuals sampled per population

ranged from 7 to 33. Within a particular population the samples were collected at

distances greater than 5 m apart to avoid sampling closely related individuals. All

sampling sites were geo-referenced with a GPS (GARMIN GPSMAP 60) and vouchers of

the sampled localities were included in the herbaria of the Universities of Salamanca

(SALA) and Granada (GDA). Plant material from each individual was dried and preserved

in silica gel until DNA extraction.

DNA isolation, AFLP protocol and cpDNA sequencing
Total DNA was isolated following the 2x CTAB protocol (Doyle & Doyle, 1987) with

minor modifications. AFLP profiles were drawn following established protocols

Figure 1 Location of the populations of Astragalus edulis sampled for this study.
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(Vos et al., 1995) with modifications. A negative control sample was consistently included

to test for contamination, and five samples taken at random were replicated to test for

reproducibility. Selective primers were initially screened using 24 primer combinations for

the selective PCR and three were finally selected (fluorescent dye in brackets): EcoRI-AGA

(6-FAM)/MseI-CTG, EcoRI-AAG(VIC)/MseI-CAG and EcoRI-ACC(NED)/MseI-CTG,

because they generated a relatively high number (a high number of alleles per individual is

desirable in conservation genetic studies given that AFLP are dominant markers;

Lowe, Harris & Ashton, 2004) of clearly reproducible bands, for which homology was easy

to ensure. The fluorescence-labelled selective amplification products were separated in a

capillary electrophoresis sequencer (ABI 3730 DNA Analyzer; Applied Biosystems,

Foster City, CA, USA), with GenScan ROX (Applied Biosystems, Foster City, CA, USA)

as the internal size standard, at the Genomic Department of Universidad Politécnica

de Madrid. Raw data with amplified fragments were scored and exported as a

presence/absence matrix.

To complement the information of the mainly nuclear AFLPs, the plastid regions

trnG-trnS, trnC-rpoB, and tabF-tabC (Taberlet et al., 1991; Shaw et al., 2005) were

explored (see Table 2 for details). These regions showed the highest variability of

Table 1 Geographic features of the populations sampled in the study. (N) Number of individuals

used for the AFLP analyses.

Population

code

Locality Altitude Longitude Latitude N

AE1 Spain; Almerı́a, Alcubillas 735 −2.6025 37.0987 16

AE2 Spain; Almerı́a, Tabernas 915 −2.4643 37.1306 24

AE3 Spain; Almerı́a, Gérgal 720 −2.5254 37.1209 32

AE4 Spain; Almerı́a, Gérgal, Arroyo Verdelecho 648 −2.4704 37.1002 24

AE5 Spain; Almerı́a, Tabernas, Desierto de Tabernas 621 −2.4863 37.0668 23

AE6 Spain; Almerı́a, Filabres, Rambla del Saltador 541 −2.3610 37.1206 33

AE7 Morocco; La Oriental, between El-Aı̈oun and

Tanarchefi

919 −2.6016 34.4174 17

AE8 Morocco; Taza, Jebel Guilliz 425 −3.3496 34.4669 21

AE9 Morocco; Marrakech, Chemaia, prox. Kettara 480 −8.1875 31.8729 22

AE10 Morocco; Marrakech, between Marrakech and

Chichaoua

380 −8.6185 31.5720 14

AE11 Morocco; Taroudant, between Tasgount and Ighil 1,437 −8.4832 30.1831 18

AE12 Morocco; Taroudant, between Irherm and Tata 1,710 −8.4478 30.0467 19

AE13 Morocco; Taroudant, Tafraoute, Tizi-n-Tarakatine,

prox. El Jebar

1,484 −8.8587 29.7376 25

AE14 Morocco; Taroudant, between Tafraoute and

Tleta-Tasrite

1,620 −8.9385 29.6354 7

AE15 Spain; Canary Islands; Lanzarote, Vega de Temuime 159 −13.728 28.9337 29

AE16 Spain; Canary Islands; Fuerteventura, Tiscamanita 234 −14.033 28.3576 14

AE17 Spain; Canary Islands; Fuerteventura, Barranco de

Majada Blanca

181 −13.986 28.2673 22
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23 surveyed cpDNA regions in the preliminary studies using 10 individuals and were

therefore used to analyse a total of 61 individuals (i.e., 3–4 individuals per population, due

to amplification failure in 7 cases) of A. edulis : 38 from Iberian Peninsula (IP), 17 from

Morocco (M) and, 6 from Canary Islands (CI). PCR products were purified using PCR

Clean-Up with ExoSAP-IT Kit (AFFIMETRIX, Santa Clara, CA, USA) following the

manufacturer’s instructions. The cleaned amplification products were analysed with a

3,730 DNA Genetic Analyzer capillary sequencer (Applied Biosystems, Foster City, CA,

USA). All sequences were deposited in GenBank (see Supplemental Information).

Molecular data analysis
An unrooted phylogram based on Nei and Li’s genetic distances (Nei & Li, 1979) and

AFLP data was calculated using the Neighbour-Joining (NJ) clustering method, with 1000

bootstrap pseudoreplicates (BS), in order to evaluate genetic structure within A. edulis.

This was conducted with the software PAUP v4.0b10 (Swofford, 1998). As an additional

estimate of the population genetic structure and based on Dice’s similarity coefficient

(Dice, 1945; Lowe, Harris & Ashton, 2004), a Principal Coordinate Analysis (PCoA) was

performed with NTSYS-pc 2.02 (Rohlf, 2009) as an additional approach to the overall

genetic relationships among the individuals analysed.

An analysis of molecular variance (AMOVA) was performed with the software

ARLEQUIN 3.5.1.2 (Excoffier, Laval & Schneider, 2005). The analysis was first conducted

considering all populations belonging to the same group and, second, partitioning genetic

variation into portions assignable to differences among three predefined groups (the

three main geographic groups derived from the NJ phylogram, i.e. (IP: AE1–AE6),

(M: AE7–AE14), and (CI: AE15–AE17)) in order to test for identifiable genetic structures

among geographical divisions. Significance levels of the variance components were

estimated for each case using non-parametric permutations with 1023 replicates.

The proportion on polymorphic alleles measured by Nei’s gene-diversity index

(Nei, 1987) was calculated for each population using the R package AFLPDAT for R (Ehrich,

2006). This package was also used to calculate the frequency down-weighted marker

values per population or sampling site (DW; Schönswetter & Tribsch, 2005), which

estimates genetic rarity of a population as equivalent to range down-weighted species

values in historical biogeographical research (Crisp et al., 2001). Finally, the number of

rare alleles (Nr), (i.e. bands that showed an overall frequency lower than 10%, and that

are present in less than 20% of the populations (Pérez-Collazos, Segarra-Moragues &

Catalán, 2008), was calculated as an additional measure of rarity.

Table 2 PCR primers and conditions used to obtain cpDNA sequence data for Astragalus edulis.

cpDNA

region

Forward

primer

Reverse

primer

Denaturation

Temperature/

Time

Annealing

Temperature/

Time

Extension

Temperature/

Time

Cycles

trnG-trnS 3′trnGUUC trnSGCU 95�C/30″ 62�C/30″ 72�/1′30″ 35

trnC-rpoB trnCGCAR rpoB 95�C/30″ 55�C/30″ 72�/1′30″ 35

tabC-tabF trnLUAA5′ trnFGAA 95�C/30″ 52�C/30″ 72�/2′30″ 35
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The completeness of haplotype sampling across the range of A. edulis was estimated

using the Stirling probability distribution. It provides a way to evaluate the assumption

that all haplotypes have been sampled (Dixon, 2006). Plastid-DNA sequences were

assembled and edited using GENEIOUS PROTM 5.4 (Drummond et al., 2012) and aligned

with CLUSTALW2 2.0.11 (Larkin et al., 2007), and further adjustments were made by

visual inspection. The resulting sequences were concatenated; the gaps longer than one

base pair were coded as single-step mutations and treated as a fifth character state. An

unrooted haplotype network was constructed using the statistical parsimony algorithm

(Templeton, Crandall & Sing, 1992) as implemented in TCS 1.21 (Clement, Posada &

Crandall, 2000), and used to infer the existing genealogical relationships.

Selection of relevant genetic units for conservation (RGUCs)
The selection of RGUCs is based on AFLP data and relies on the combination of two

methods based on population structure and probabilities of loss of rare alleles.

In summary, the values of the probability of rare-allele loss are compared with those of

the degree of inter-population subdivision (Caujapé-Castells & Pedrola-Monfort, 2004;

Pérez-Collazos, Segarra-Moragues & Catalán, 2008).

First, the population-differentiation coefficient (FST) obtained with ARLEQUIN was

used to estimate the total number of populations that should be targeted, according to the

Ceska, Affolter & Hamrick (1997) equation modified P ¼ 1� FnST (Segarra-Moragues &

Catalán, 2010; but not Pérez-Collazos, Segarra-Moragues & Catalán, 2008) where n is the

number of populations to be sampled to represent a given proportion (P) of the among-

population genetic diversity. For A. edulis, a P value of 99.9% of the total genetic diversity

was established, to cope properly with high conservation standards.

Second, using the mean frequencies of rare bands (i.e. with an overall frequency lower

than 10% and present in less than 20% of the populations) and their associated

probabilities of loss, the probability that a sample size onN populations fails to include an

allele with population frequency p was calculated (Caujapé-Castells & Pedrola-Monfort,

2004; Pérez-Collazos, Segarra-Moragues & Catalán, 2008). For this, the expression

L ¼ ¼ (1 − p)2N (Bengtsson, Weibull & Ghatnekar, 1995) was used, where p represents the

allele frequency and N the number of populations in which a rare allele is present

(Pérez-Collazos, Segarra-Moragues & Catalán, 2008). For each rare allele, the observed (Lo)

and expected (Le) probabilities of loss were calculated. The negative natural logarithms

(−Log Lo and −Log Le) of those values were plotted (y-axis) against the mean frequency of

each rare allele (x-axis) and used to calculate the respective linear regressions. The

representative R value (which indicates the proportion of rare alleles captured by sampling

only one population) was calculated as the quotient between the slope of the expected

regression line and the slope of the observed regression line, i.e. R¼m(−Log Le)/m(−Log Lo)
(Bengtsson, Weibull & Ghatnekar, 1995; Caujapé-Castells & Pedrola-Monfort, 2004; Pérez-

Collazos, Segarra-Moragues & Catalán, 2008; Segarra-Moragues & Catalán, 2010).

Several qualitative features of the populations and habitat disturbances were recorded

during the field work in order to combine them with the measures of genetic diversity.

For this, we selected population variables that were accounted as follows (adapted from
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IUCN, 2001): i) Occupation area: small <1 km2 vs. large >1 km2, ii) population size:

high >1,000 individuals vs. low <1,000 individuals), iii) vulnerability: stable ¼ with no

disturbances or with minor disturbances/declining ¼ with clear disturbance of both

individuals and habitat/critically declining ¼major disturbances, with major disturbance

of individuals and habitat; and iv) conservation status of the area: protected vs.

unprotected.

Generalized linear models were used to test whether the main genetic diversity and

rarity parameters (i.e. hNei, DW, and Nr) show associations with qualitative population

and conservation features. Beforehand, to enhance the robustness of the models, we

resampled the cases 10,000 times by bootstrapping using the R boot package (Canty &

Ripley, 2013). Nei’s diversity index and the frequency of down-weighted marker values

were fitted to Gaussian distributions, whereas the number of rare alleles was fitted to a

Poisson distribution. To test significant level differences of a given variable, we used the

glht function of the R multcomp package, indicated for multiple comparisons in

generalized linear models (Hothorn, Bretz & Westfall, 2008).

RESULTS
Genetic variability and structure
A total of 1134 reliable polymorphic bands (averaging ca. 45 per individual per primer

combination) were found from the three primer pairs selected for the 360 individuals

studied. The final error rate was insignificant (1.67%). The number of rare alleles, DW

values and Nei’s genetic diversity values corresponding to each population are given in

Table 3. AFLPs detected low levels of intrapopulation genetic diversity for A. edulis. Nei’s

gene diversity index ranged from a minimum value of 0.066 (AE7; in the easternmost

population of Morocco) to a maximum of 0.155 (AE5; in the central part of the Iberian

distribution of the species) and the diversity values were similar across all other

populations studied. The total species diversity was 0.108. Regarding rarity, the genetically

most distinctive population (DW ¼ 5.713) appeared to be AE16 in Fuerteventura,

while the lowest DW values were found in the easternmost part of the Iberian core

(AE6; DW ¼ 1.507).

Both the unrooted NJ tree and the PCoA based on the entire data set (Fig. 2) revealed

well-defined genetic structure of populations in correspondence to geographic groups.

The first group (Fig. 2A) includes all populations from the Iberian Peninsula (85% BS), a

second cluster those fromMorocco (74% BS) and the third those from the Canary Islands

(100% BS), plus some individuals from Morocco (two samples from AE9), although the

relationship between these latter two groups is weak (62% BS) and the Moroccan part of

this cluster seems to be closely related to the remaining Moroccan individuals. The same

geographical groups are revealed by the PCoA (Fig. 2B), but in this case the apparently

close relationship between some of the Moroccan and all the Canarian samples suggested

by NJ does not seem to be supported, while an affinity between the Moroccan and the

Iberian individuals is suggested. The first three axes account for 13.2, 6.4, and 4.7% of the

total variance, respectively.
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Table 3 Population, geographical groups, AFLP derived diversity and rarity descriptors, rarity assessment through qualitative variables

(see text) and cpDNA haplotypes (endemic ones in bold characters) for the studied population of A. edulis. Geographical groups: IP, Iber-

ian Peninsula; M, Morocco; CI, Canary Islands; hNei, Nei’s diversity index (Nei 1987); DW, frequency down-weighted marker values; Nr, number of

rare alleles; H, haplotype.

Population Geographical

group

hNei DW Nr Occupation

area

Population

size

Vulnerability Legal

status

H

AE1 IP 0.101 3.505 31 small reduced critical unprotected IV,V

AE2 IP 0.103 2.226 25 large high moderate protected I,V

AE3 IP 0.125 3.298 45 large high moderate protected I,IV

AE4 IP 0.151 4.038 38 large high acceptable protected I,III

AE5 IP 0.155 4.644 47 large high acceptable protected I,IV,V

AE6 IP 0.076 1.507 16 large reduced moderate unprotected I

AE7 M 0.066 1.754 14 small reduced critical unprotected I

AE8 M 0.119 3.2 33 large high moderate unprotected I

AE9 M 0.114 3.218 51 small reduced critical unprotected IV

AE10 M 0.082 1.728 8 small reduced moderate unprotected VI

AE11 M 0.104 2.924 27 large reduced moderate unprotected II

AE12 M 0.097 2.834 30 small reduced critical unprotected IV

AE13 M 0.103 2.815 33 large high moderate unprotected IV

AE14 M 0.076 2.08 12 small reduced critical unprotected IV

AE15 CI 0.074 2.862 14 small high moderate unprotected VII

AE16 CI 0.127 5.713 37 small reduced moderate unprotected VII

AE17 CI 0.110 4.996 55 large reduced acceptable unprotected VII

Figure 2 Cluster analysis of genetic diversity, using AFLPs, in Astragalus edulis. (A) Neighbour-Joining analysis, BS values are indicated;

(B) PCoA. Geographical groups: IP, Iberian Peninsula: M, Morocco: CI, Canary Islands.

Peñas et al. (2016), PeerJ, DOI 10.7717/peerj.1474 9/20

http://dx.doi.org/10.7717/peerj.1474
https://peerj.com/


AMOVA analysis of the entire data set as a single group (Table 4) revealed that the

genetic variation among individuals (71.06%) is meaningfully higher than the variation

among populations (28.94%, FST ¼ 0.289, p < 0.001). The results of a hierarchical

AMOVA confirm that a population division into the three geographic groups defined by

NJ and PCoA analyses reveals 24.44% of the variance attributed to differences among

these geographical areas (FST ¼ 0.346, p < 0.001), while only 10.14% of the variance is

attributed to differences among populations within these three geographic groups.

The length of the three cpDNA regions for 61 individuals was 712 to 926 bp, and

resulted in an alignment of 2545 bp (2549 characters with indels coded). The genetic

variability within A. edulis was remarkably low (26 cpDNA regions initially tested, 3 of

them used to analize a total of 61 individuals), and all the mutations together defined a

total of 7 haplotypes. The completeness of haplotype sampling estimated using Dixon’s

(2006) method was 0.95 (most likely value of haplotypes ¼ 7.002), suggesting that all

haplotypes present in the species were sampled. TCS implied a 95% parsimony network

with a maximum limit of five steps (Fig. 3). The most frequent haplotype (I) was found in

five populations from the Iberian Peninsula and in the north-eastern Moroccan

populations, while the second most frequent haplotype (IV) was represented in four

western Moroccan populations and also in two Iberian populations. Within the Iberian

Peninsula, two endemic haplotypes (III and V) were found and the western Moroccan

populations also showed two endemic haplotypes (II and VI). A single endemic haplotype

(VII) was found in Fuerteventura and Lanzarote (Fig. 3; Table 3).

Identification of RGUs
According to our results, 99.9% of the overall genetic diversity through the entire

distribution range of A. edulis would be represented by just 6 populations (N¼ 5.69). This

should be the minimum number of populations to be targeted for suitable conservation.

Of the total 1134 alleles detected by the AFLP analysis, 273 complied with the established

rarity criteria (Table 3; Appendix 1). Of these rare alleles, 66 were exclusive to the Iberian

Peninsula), 78 to Morocco and 57 to the Canary Islands; the remaining rare bands were

Table 4 Comparison of analyses of molecular variance (AMOVA), based on AFLP data, of Astragalus

edulis across the main geographical groups (IP, Iberian Peninsula; M, Morocco; CI, Canary Islands),

and populations (are shown in brackets) (see Table 1 and Fig. 1).

Source of

variation

MS d.f. Absolute

variation

Percentage

of variation

FST 95%

confidence

interval

One group (A1–A17) 0.289 26.2–30.8

Among populations 9268.217 16 24.641 28.94

Within populations 20755.722 343 60.512 71.06

Three groups: IP(A1–A6); M(A7–A14) and C(A15–A17) 0.346 21.1–26.8

Among groups 5694.211 2 22.611 24.44

Among populations 3574.006 14 9.383 10.14

Within populations 20755.722 343 60.512 65.41
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distributed among different populations of the three geographical regions (detailed data

available upon request). The representative R-value (i.e. proportion of rare alleles

determined by sampling only one population) considering A. edulis as one group was

R ¼ 0.354. This means that the sampling of a single population of the entire distribution

area of the species would represent the 35.4% of the whole set of rare alleles of the species.

This value, calculated independently for each geographic area, showed slight variations

(i.e. IP: R¼ 0.407, M: R¼ 0.355 and CI: R¼ 0.293). Based on the mean frequencies of the

rare alleles, as well as on their distribution among populations, the areas where each of

these alleles had the highest probability of being found by randomly sampling one

population were: IP (124), M (92), and CI (57). Thus, the optimal proportion of

populations to be sampled for conservation purposes from each geographical group can

be expressed as 0.45 (IP): 0.34 (M): 0.21 (CI).

Approximately half of the A. edulis populations (9/17) occupy large areas (>1 km2), but

only 7 populations exceed 1000 individuals (Table 3). Most of the Iberian populations

show large occupation areas, population sizes, and stable or moderate habitat decline.

By contrast, the Moroccan populations present smaller occupation areas, population sizes,

Figure 3 Statistical parsimony network and geographical distribution of plastid DNA haplotypes. The insert shows populations within the

Iberian Peninsula. The small black dot represents a missing intermediate haplotype. Sectors within circles in the map indicate the presence of

different haplotypes in different individuals of the same population.
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and usually severe habitat decline. Only four populations from the Iberian Peninsula

occupy protected areas, e.g. within Special Areas of Conservation of the Natura 2000

network or Andalusia regional system of protected areas (RENPA Network), while the

areas occupied by the remaining populations lack legal protection.

The generalized linear model (Table 5) revealed significant influence for most of the

geographic and population variables on the main genetic diversity and rarity parameters.

Geographically, the Iberian Peninsula and Canary Islands accounted for higher genetic

diversity than did Moroccan populations. Also, as expected, a significantly higher genetic

diversity and rarity (Nei’s diversity index, frequency down-weighted marker values, and

number of rare alleles) was found in populations occupying larger areas, with higher

numbers of individuals, stable populations, and locations in protected areas.

DISCUSSION
Genetic variability and structure
Although we are aware that AFLP-based estimates of the level of genetic variation are

difficult to compare across studies (Nybom, 2004), the genetic-variation levels when

standardizing sample size by population (i.e. indicating that relative differences in

population diversity are not an artefact of the sampling effort) in A. edulis appear to

approach those found in another annual species, Hypochaeris salzmanniana

(Ortiz et al., 2007), which has a comparable distribution area (south-western Spain and

Atlantic coast of Morocco). The diversity levels found are also comparable to those of

other Mediterranean perennial herbs (Edraianthus serpyllifolius and E. pumilio;

Surina, Schönswetter & Schneeweiss, 2011) belonging to Astragalus (A. cremnophylax;

Travis, Manchinski & Keim, 1996), or even long-lived western Mediterranean trees

Table 5 Associations between geographical and qualitative population variables (factors) and

genetic diversity and rarity (hNei, Nei’s diversity index; Nei, 1987; DW, frequency down-weighted

marker values; Nr, number of rare alleles), as tested using the generalized linear model (GLM).

Geographical groups: IP, Iberian Peninsula; M, Morocco; CI, Canary Islands. All the values are indi-

cated as mean ±SE. Different letters indicate significant differences in the multiple comparison test at

P < 0.05, performed after the bootstrapped GLM.

Factor Level hNei DW Nr

Geographical group IP 0.12 ± 0.01a 3.20 ± 0.47ab 33.66 ± 4.89a

M 0.10 ± 0.01a 2.57 ± 0.22b 26.00 ± 5.00b

CI 0.10 ± 0.03a 4.52 ± 0.86a 35.33 ± 11.86a

Occupation area large 0.12 ± 0.01a 3.30 ± 0.37a 35.44 ± 4.06a

small 0.09 ± 0.01b 2.96 ± 0.46a 24.62 ± 5.31b

Population size large 0.12 ± 0.01a 3.29 ± 0.31a 33.57 ± 4.33a

small 0.09 ± 0.01b 3.03 ± 0.45a 28.10 ± 5.11b

Vulnerability stable 0.14 ± 0.01a 4.56 ± 0.28a 46.66 ± 4.91a

declining 0.10 ± 0.01b 2.91 ± 0.41b 26.44 ± 3.99b

critically declining 0.09 ± 0.01b 2.68 ± 0.33b 27.60 ± 7.05b

Legal status protected 0.13 ± 0.02a 3.55 ± 0.52a 38.75 ± 4.97a

unprotected 0.09 ± 0.02b 3.01 ± 0.34a 27.77 ± 4.01b
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(Juniperus thurifera, Terrab et al., 2008). Nevertheless, AFLPs have relatively low genetic

diversity in A. edulis populations, compared to that of the Iberian narrow endemic steppe

shrubs Boleum asperum (Pérez-Collazos, Segarra-Moragues & Catalán, 2008) and Vella

pseudocytisus subsp. paui (Pérez-Collazos & Catalán, 2006).

Diversity as well as rarity values are particularly useful when used to compare

populations or geographic areas occupied by the study species. In A. edulis the maximum

diversity and rarity values within the Iberian distribution range correspond to the most

central populations (AE4 and AE5), and within Morocco the AE8 and AE9 populations

(Table 3; Fig. 1). Contrarily, on the easternmost edge of the distribution area of the species

some of the lowest diversity and rarity values were found, i.e. AE6 (IP) and AE7 (M).

The central parts of the Iberian distribution of this species may represent a long-term

in situ survival area. By contrast, the easternmost Iberian population AE6 could be the

result of a single dispersal event, the extremely low genetic-diversity and rarity values

indicating a genetic bottleneck. Within Morocco AE8 is a large population (several

hundred individuals) and could have acted as a source area, as confirmed also by the NJ

analysis (Fig. 2A). Meanwhile, AE7, with less than 20 individuals, could also have resulted

from a single dispersal event. This hypothetical fine-scale west to east colonization pattern

described for the Iberian Peninsula parallels that observed in Morocco and the low

diversity and rarity values found in the easternmost Iberian and Moroccan sampling

sites (AE6–AE7) may indicate that the eastward colonization history of the species in

these areas might have been affected by founder effects and genetic bottleneck.

This mode of peripheral founder events in small populations may be key in the

future genetic differentiation of populations, as described for other plant species

(e.g. Tremetsberger et al., 2003; Pérez-Collazos, Segarra-Moragues & Catalán, 2008).

In both the Iberian Peninsula and Morocco, aridity is higher eastwards, which on

one hand may hamper future survival of these easternmost populations but, on the

other hand, may promote new genetic variants as a response to environmental

selection pressure.

In the Canary Islands, diversity and rarity reached their highest levels in AE16

(Fuerteventura), and their lowest levels in AE15 (Lanzarote). Considering that both

islands emerged as a single proto-island and remained together as recently as the late

Pleistocene (Fernández-Palacios et al., 2011), the current A. edulis distribution could be

the product of an ancient long-distance dispersal event, a recent long-distance

dispersal event, or the result of range fragmentation. The observed diversity and rarity

values seem to favour the hypothesis of a rather recent long-distance dispersal event

from Fuerteventura to Lanzarote. In any case, AE15, as well as AE7 and AE6,

had been affected by founder effects and genetic bottlenecks probably related

to genetic drift.

The overall AMOVA analysis led to the conclusion that most of the overall genetic

variation of the species could be attributed to intrapopulational (inter-individual)

variability, while a smaller percentage of the total variation appeared among populations

(Table 4). Comparing our findings with those resulting with AFLPs for other species

from the western Mediterranean, either with similar distribution areas (Ortiz et al., 2007;
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Terrab et al., 2008), or Iberian narrow endemic steppe plants (Pérez-Collazos & Catalán,

2006; Pérez-Collazos, Segarra-Moragues & Catalán, 2008), we detected similar patterns and

divergence levels. Also similar patterns were found for the tree J. thurifera, which shows a

wider distribution area, and surprisingly they also parallel those shown by the perennial

shrubs B. asperum and V. pseudocytisus ssp. paui, which are very narrow endemics from

NE Spain. It is well known that long-lived and outcrossing species retain most of their

genetic variability within populations and, by contrast, annual and/or selfing taxa allocate

most of the genetic variability among populations (Nybom, 2004). Nevertheless, we found

similar high levels of within-population diversity for the annual A. edulis than for the

perennials J. thurifera, B. asperum, and V. pseucocytisus ssp. paui, while for the annual herb

H. salzmanniana the levels of inter-individual (within population) genetic variability are

significantly lower (Ortiz et al., 2007). These data support the idea that the levels of

intrapopulation genetic diversity are relatively high for an annual species, perhaps

facilitating the preservation of the gene pool of the species and, therefore, of the

evolutionary processes that generate and maintain it.

Designing conservation strategies: selection of RGUCs
Astragalus edulis has a relatively high number of populations and number of individuals

(at least in the large Spanish core), hampering the protection in situ of the entire

distribution range of the species, and thus populations need to be identified to apply

conservation measures. To select the populations deserving protection, by means of

RGUCs, we propose the consideration of factors that could have influenced the

evolutionary history of the species lineages (Frankham, Ballou & Briscoe, 2009). The

selection of RGUCs has enabled the estimation of the number of populations that should

be targeted to sample 99.9% of the total genetic diversity of A. edulis. This approach helps

to select particular populations that should be prioritized because they have a singular

allelic composition. The probabilities of rare-allele loss indicate that the proportions that

should be preserved from each geographical group should be 0.45(IP):0.34(M):0.21(CI).

Considering the diversity and rarity values found for each population based on AFLP data

and also this optimal proportion of populations to be sampled for conservation

purposes from each geographical group, we would initially recommend the priority

selection of populations AE1, AE4 and AE5 (IP), AE8 and AE9 (M) and AE16 (CI).

Nevertheless, linking genetic diversity and rarity with qualitative population and

conservation features, we have found that Astragalus edulis exhibit a significantly

higher genetic diversity and rarity in populations occupying larger areas, with higher

numbers of individuals, stable populations, and locations in protected areas.

That is the case of populations AE4, AE5 but not of populations AE1,

AE9 and AE16.

This selection of RGCUs based on AFLP data and population parameters could be

complemented with the available information on haplotypes. The presence of endemic

haplotypes in the three main geographical groups suggests an impact of the biogeographic

barriers in the study area (Atlantic Ocean, Atlas Mountains, Alboran Sea) in shaping

A. edulis genetic diversity and divergence. Haplotypes endemic to restricted areas
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represent singular genetic variants that may have evolved separately from each other and,

therefore, they deserve particular conservation efforts. Within the Iberian distribution

range of the species, populations AE4 and AE5 show maximum diversity and rarity values

and their sampling may warrant conservation of the Iberian endemic haplotypes III and V,

apart from the widely distributed haplotypes I and IV (Table 3; Fig. 3). The selection of

AE1, the Iberian population with the next highest singularity value, would additionally

contribute to the conservation of the endemic haplotype V. Within the Canary Islands,

population AE16 registers comparatively the highest values of singularity and diversity;

moreover, the selection of AE16 for conservation purposes would warrant the

conservation of haplotype VII, which is endemic to these islands. Within Morocco,

populations AE8 and AE9 have comparatively the highest values of singularity and

diversity, but haplotypes endemic to NAfrica −II and VI, which are present in populations
AE11 and AE10, respectively–would not be represented by the selection of AE8 and AE9.

The protection of populations AE11 and AE10 would also be highly desirable, because in

this case the evolutionary history based on the cpDNA of A. edulis in this geographic area

would also be taken into account. Given that the Moroccan populations of this species

show medium levels of genetic diversity and rarity (considering the overall values of

A. edulis), our final decision on which particular populations from N Africa deserve

priority for conservation would probably be more accurate if based on the consideration

of these rare or restricted haplotypes. From this perspective, AE10 and AE11 could be

prioritized over AE8 or AE9, although this decision should be taken with care given that

our sampling may be low despite the results obtained from Dixon’s test. The protection of

large populations and smaller dispersed patches usually help preserve genetic integrity and

diversity (Alexander, Liston & Popovich, 2004), but some selected RGUCs for A. edulis have

small occupation areas and population sizes, and are critically vulnerable.

Several conservation measures could be implemented for the populations selected, e.g.

studies to gather data on spatial distribution, population-size fluctuations, habitat quality,

and fitness trends (Morris & Doak, 2002), reinforcement of the smallest populations, and

ex situ conservation in seed banks (Peñas, 2004). Indeed, in order to preserve Astragalus

edulis at long-term, including the evolutionary potential of its populations, are needed

ex situ collections (e.g. botanical gardens and seed banks; Guerrant, Havens & Maunder,

2004) combined with any real in situ conservation value (Cavender et al., 2015).

The identification of highly representative populations based on genetic data is

essential to design appropriate conservation guidelines, especially because this species is

listed in a threat UICN category. In biological conservation it is useful to combine

molecular data with additional environmental, ecological, and biological data sets in

multidisciplinary approaches (Habel et al., 2015). The method followed here to choose

RGUCs draws not only on the approach of other authors (Ciofi et al., 1999; Pérez-Collazos,

Segarra-Moragues & Catalán, 2008; Segarra-Moragues & Catalán, 2010), but also on

complementary phylogeographic, population, and ecological data. Therefore, could be

more comprehensive and also perhaps more useful for management efforts that

should prioritize populations to preserve the evolutionary potential of the species

(Rumeu et al., 2014).
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