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e Background and Aims Brassicaceae is one of the most diversified families in the angiosperms. However, most
species from this family exhibit a very similar floral bauplan. In this study, we explore the Brassicaceae floral mor-
phospace, examining how corolla shape variation (an estimation of developmental robustness), integration and dis-
parity vary among phylogenetically related species. Our aim is to check whether these floral attributes have evolved
in this family despite its apparent morphological conservation, and to test the role of pollinators in driving this

evolution.

e Methods Using geometric morphometric tools, we calculated the phenotypic variation, disparity and integration
of the corolla shape of 111 Brassicaceae taxa. We subsequently inferred the phylogenetic relationships of these taxa
and explored the evolutionary lability of corolla shape. Finally, we sampled the pollinator assemblages of every
taxon included in this study, and determined their pollination niches using a modularity algorithm. We explore the
relationship between pollination niche and the attributes of corolla shape.

o Key Results Phylogenetic signal was weak for all corolla shape attributes. All taxa had generalized pollination
systems. Nevertheless, they belong to different pollination niches. There were significant differences in corolla
shape among pollination niches even after controlling for the phylogenetic relationship of the plant taxa. Corolla
shape variation and disparity was significantly higher in those taxa visited mostly by nocturnal moths, indicating
that this pollination niche is associated with a lack of developmental robustness. Corolla integration was higher in
those taxa visited mostly by hovering long-tongued flies and long-tongued large bees.

e Conclusions Corolla variation, integration and disparity were evolutionarily labile and evolved very recently in
the evolutionary history of the Brassicaceae. These floral attributes were strongly related to the pollination niche.
Even in a plant clade having a very generalized pollination system and exhibiting a conserved floral bauplan, polli-
nators can drive the evolution of important developmental attributes of corolla shape.

Key words: corolla shape, phenotypic integration, canalization, robustness, plant—pollinator interactions,
Brassicaceae, floral morphospace, geometric morphometrics, phenotypic disparity.

INTRODUCTION

Phenotypic integration is the coordinated variation of morpho-
logical traits within functional modules (Olson and Miller,
1958; Pigliucci and Preston, 2004). Trait covariation and phe-
notypic integration may be the consequences of natural selec-
tion acting to improve the functioning of those modules, a
phenomenon called functional integration (Pigliucci, 2003;
Armbruster et al., 2014; Klingenberg, 2014). Phenotypic inte-
gration may also be the mere consequence of architectural and
developmental processes prompting covariation among traits
(Herrera et al., 2002; Armbruster et al., 2014; Klingenberg,
2014).

Angiosperm flowers are complex structures that perform an
essential function in plants, namely reproduction (Thomson,
1983; Harder and Barrett, 2006; Willmer, 2011). In animal-
pollinated plants, flowers are functional modules composed of
integrated units that work together to attract pollinators and
boost their pollination effectiveness. Their efficacy in

enhancing plant reproduction depends on the coordinated func-
tioning of their elements (Cérdoba and Cocucci, 2011). Due to
its direct association with plant fitness, it is widely assumed
that floral integration has been optimized by selection (Berg,
1960; Armbruster et al., 2004; Ordano et al., 2008). Berg
(1960), in her seminal study, showed that plant species with
specialized pollination systems exhibit ‘correlation pleiades’ or
modules of integrated traits. Following these ideas, subsequent
studies have reported that self-compatible plants display weaker
floral integration than self-incompatible species (Anderson and
Busch, 20006), that species with specialized pollination exhibit
greater floral integration than those with generalized pollination
(Pérez et al., 2007; Rosas-Guerrero et al., 2011; Ellis et al.,
2014; Gémez et al., 2014), and that the type of pollinators may
determine the magnitude of phenotypic integration of the flow-
ers (Pérez-Barrales er al., 2007, 2014; Gonzalez et al., 2015).
This plethora of studies indicates that pollinators may select not
only for floral traits but also for floral integration (Nattero
etal., 2011).
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The functioning of integrated complex traits may be hindered
by the occurrence of phenotypic variation and trait imprecision
(Hansen et al., 2006; Young, 2006; Pélabon et al., 2012).
Natural selection, being an optimizing mechanism, tends to in-
crease the accuracy of complex traits by, among other sources,
decreasing their variation and increasing their precision (Bell,
1997; Hansen et al., 2006). Although empirical evidence re-
mains scarce, it seems that the magnitude of phenotypic varia-
tion in floral traits, a manifestation of the lack of developmental
robustness, is in several plant species a consequence of their
interaction with pollinators (Williams & Conner, 2001;
Armbruster et al., 2009a, b; Rosas-Guerrero et al., 2011;
Pélabon et al., 2012). A relaxation of the selection imposed by
pollinators can cause an increase in the magnitude of floral var-
iation (Galen, 1996; Williams and Conner, 2001).

An essential but still unsolved key question is how pheno-
typic variation and integration is expressed at a macroevolu-
tionary scale (Geber, 2013; Goswami et al., 2014). In
particular, it is still unknown whether these attributes affect the
morphological disparity of the members of a given clade
(Geber, 2013; Goswami et al., 2014). Morphological disparity,
estimated as the phenotypic distinctness of a form in a given
morphospace (Eble, 2004), is an estimate of the magnitude of
the phenotypic divergences of taxa (Erwin, 2007). In fact, mor-
phological disparity has been recently used to estimate floral
morphological  divergence (Chartier et al., 2014).
Unfortunately, empirical information on the magnitude of vari-
ation of morphological disparity across plant taxa and how this
variation is related to pollination remains scarce, although it
would help to reveal how pollinators mediate the divergence in
floral shapes.

The main goal of this study is to investigate the role of polli-
nators in the evolution of phenotypic integration, disparity and
variation of the Brassicaceae corolla shape. Several features
make Brassicaceae an especially useful plant family to investi-
gate this question. Brassicaceae is one of the most widespread
families worldwide. It comprises more than 3700 species, about
340 genera and 25 tribes, including economically important
crops (e.g. Brassica, Raphanus, Eruca), weeds (e.g. Capsella,
Lepidium, Sisymbrium, Thlaspi), ornamentals (e.g. Hesperis,
Erysimum, Lobularia, Matthiola) and one of the most cele-
brated model species, Arabidopsis thaliana (L.) Heynh. (Al-
Shehbaz et al., 2006; Warwick et al., 2006; Couvreur et al.,
2010; Al-Shehbaz, 2012). Brassicaceae is considered a ‘model
family’ for evolutionary developmental studies (Beilstein ef al.,
2008). Despite being one of the most diversified families in the
angiosperms, most species exhibit a very conserved and distinc-
tive flower displaying a cruciform corolla (i.e. four petals ar-
ranged in the form of a cross) (Heywood et al., 2007; Franzke
et al., 2011). Nevertheless, it is possible to find departures in
shape from this typical crucifer floral bauplan in some genera
(Endress, 1992). For example in a few genera such as Teesdalia
and Iberis the outer petals are radiate and larger than the inner
petals, while the petals are absent in Pringlea and a few species
from Lepidium and Coronopus (Heywood et al., 2007).
Furthermore, not only have floral traits but also floral integra-
tion has been found to vary between Brassicaceae species in
several genera, such Streptanthus, Brassica, Raphanus and
Erysimum (Murren et al., 2002; Anderson and Busch, 2006;
Penrod, 2010; Gémez et al., 2014). Another distinctive feature

of Brassicaceae is its generalized pollination system. Most cru-
cifers are pollinated by a high diversity of pollinators belonging
to many disparate functional groups. Despite this generalized
pollination system, both diversity and type of pollinators varies
among species even within the same genus (Gomez et al.,
2015). The specific goals of the current study are: (1) to quan-
tify the morphological disparity, variation and integration of the
corolla shape in Brassicaceae; (2) to examine how corolla shape
variation, disparity and integration has evolved along the phy-
logeny of this family; and (3) to determine the role of pollina-
tors in the evolution of these corolla shape attributes.

MATERIAL AND METHODS
Study species

We have studied 111 Brassicaceae species and subspecies be-
longing to 30 genera and 16 tribes (Supplementary Data, Table
S1). We have included species belonging to all main phyloge-
netic lineages identified by Couvreur et al. (2010), in order to
cover as much as possible the Brassicaceae evolutionary diver-
sity. Their flowers were polysymmetric, disymmetric or mono-
symetric, as well as tetradynamous, with four inner and long
stamens and two outer and short stamens located between the
adaxial and abaxial petals. From each species, we have tried to
study at least two populations located in different areas of their
distribution range to avoid any local effect on our results,
although this was not possible in all cases (Table S1).

Phylogenetic relationships among studied Brassicaceae

We inferred a phylogenetic hypothesis for the species in-
cluded in our data set using a supermatrix approach (Bailey
et al., 2006; Couvreur et al., 2010). This supermatrix was as-
sembled by concatenating available GenBank sequences for
nine commonly used markers in Brassicaceae phylogenetics
(Table S2). First, we surveyed in GenBank for the most fre-
quent markers for our species and two outgroup species from
two families considered the closest relative to Brassicaceae:
Cleome spinosa (Cleomaceae) and Capparis hastata
(Capparaceae). We downloaded the sequences available for
nine markers of these species: ITS and phyA of the nuclear ge-
nome, ndhF, matK, rbcL, intergenetic spacer trnL-trnF, inter-
genetic spacer trnT-trnL and intergenetic spacer rpl32-trnL of
the plastid genome, and nad4 intron 1 of the mitochondrial ge-
nome. To minimize missing data, we concatenated sequences
from different species of the same genus if evidence for mono-
phyly of the genus existed in the literature (Table S2). This pro-
cedure has been previously followed in supermatrix approaches
(Springer et al., 2004) as well as in phylogenetic inference of
Brassicaceae evolutionary relationships (Couvreur ez al., 2010).

All sequences were aligned using MAFFT (Katoh and
Standley, 2013). Alignments were improved by removing
poorly aligned or ambiguous positions. We trimmed all the
alignments using ‘automated 1’ settings in trimAl software
(Capella-Gutiérrez et al., 2009). We used the trimAl 1.3 version
available at the Phylemon 2.0 server (http://phylemon.bioinfo.
cipf.es, Sanchez et al., 2011). All trimmed alignments were
concatenated resulting in a matrix of 10534 sites and 87 taxa.
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This matrix was analysed using a maximum-likelihood (ML)
approach as is implemented in RAxML 8 (Stamatakis, 2014).
RAxML implements a very fast and efficient heuristic search
and rapid bootstrap heuristic search. We used the RAXML web-
server program available at the CIPRES portal (Miller er al.,
2010) in which 1000 bootstrap replicates were performed. We
kept the best ML phylogenetic hypothesis found by RAxML,
collapsing those nodes with a bootstrap support lower than
75 %.

Some taxa in our data set did not have any sequence avail-
able at GenBank. We grafted these taxa to their genus when
monophyly was previously confirmed. In those cases where
monophyly was not confirmed, we looked for those species that
the literature suggests as being the closest relative. These spe-
cies were added to their genus using functions in R package
‘phytools’ (Revell, 2012).

Our final tree presented some polytomies as a result of low
bootstrap support for some clades, and also due to the proce-
dure we followed to incorporate not previously sequenced spe-
cies grafting them into their genus. We created a set of 100
trees in which polytomies were randomly resolved. All the
analyses were performed under this set of trees, thus incorporat-
ing the phylogenetic uncertainty. In addition, we ultrametrized
the consensus tree using the function compute.brlen from R
package ‘ape’ (Paradis et al., 2004). Figure 1 shows the phylo-
genetic relationships between the taxa used in this study.

Corolla-shape variation, disparity and integration

Shape variation in the corolla of the Brassicaceae was
studied by means of geometric morphometric tools using a
landmark-based methodology (Zelditch et al., 2012). For
this, we selected flowers at anthesis of each of 111
Brassicaceae species included in this study (totalling 7336
flowers; see Table S1 for information on sample size per spe-
cies) and took a digital photograph of the front view and pla-
nar position. Intra-individual variation in corolla shape was
reduced by taking the photo always at the same floral pheno-
phase. We considered only flowers having unbent petals.
However, some species recurrently display odd shapes with
bent petals. We included these specimens because we were
interested in the attractive function of corolla shape. In addi-
tion, we have previously shown in Erysimum mediohispani-
cum that intraspecific corolla shape variation is much lower
than inter-individual and inter-population variation (Goémez
and Perfectti, 2010), a pattern that it is probably shared by
most Brassicaceae species.

We defined 32 co-planar landmarks covering the corolla
shape and using midrib, primary and secondary veins and petal
extremes and connections (Gomez and Perfectti, 2010). In
Brassicaceae, adaxial and abaxial petals are the inner and outer
petals, respectively (Busch and Zachgo, 2007). We identified
the adaxial and abaxial petals of our study species by determin-
ing the relative position of the petals with respect to the flower-
ing stalks and the location of the short stamens (Goémez and
Perfectti, 2010). From the two-dimensional coordinates of land-
marks, we extracted shape information and computed the gen-
eralized orthogonal least-squares Procrustes averages using the
generalized Procrustes analysis (GPA) superposition method.

We performed a principal component analysis (PCA) to explore
variation in corolla shape across Brassicaceae species, obtain-
ing the shape of the corollas at the ends of the range of variabil-
ity along the first three principal components.

Corolla shape variation was estimated as the Procrustes vari-
ance of observations in each taxon (Young, 2006). Procrustes
variance quantifies the average dispersion of data points around
the mean shape. This metric measures the variety of forms of a
taxon (Zelditch et al., 2012). Corolla shape variance is obtained
as the sum of the variances across all coordinates in shape space
(the trace of the covariance matrix) or, equivalently, the sum of
all eigenvalues in the PCA. We used the intra-populational
magnitude of shape variance, to avoid any effect due to intra-
specific geographical variation in corolla shape. So, for each
taxon with specimens from more than one population, we cal-
culated the shape variance of each population and get the aver-
age value as the shape variation of that taxon.

Corolla shape disparity was estimated by partial static dispar-
ity, a metric indicating the contribution that a particular taxon
makes to the overall disparity of the morphospace generated by
the pool of studied species (Zelditch ef al., 2012). We first cal-
culated the Procrustes distance between the mean shape of each
taxon and the grand mean of the whole pool of taxa. We then
calculated the partial static disparity as the squared Procrustes
distances of each specimen to the mean shape of the respective
group or, equivalently, the sum of the sample variances of all
Procrustes coordinates, divided by the number of taxa studied
minus one (Zelditch ez al., 2012). Because partial disparities are
additive, we expressed the contribution of each taxon to total
disparity as a percentage (Zelditch et al., 2012).

Corolla shape integration was computed as the relative vari-
ance of eigenvalues of the covariance matrix of Procrustes co-
ordinates per plant species, using the original units of squared
Procrustes distance (Young, 2006). One aspect of integration is
that variation is concentrated in one or a few of the available di-
mensions (Klingenberg, 2013). As a consequence, there will be
one or a few large and many small eigenvalues for the covari-
ance matrix of integrated data, whereas eigenvalues of the co-
variance matrix will be more homogeneous for data lacking
integration. To control for among-species differences in sam-
pling size, we re-scaled the relative variance of eigenvalues by
the total shape variance and the number of dimensions (Young,
2006). By doing this, corolla shape integration ranges between
0 and 1, and can be interpreted as the percentage of integration
regarding the maximum possible integration. This index is thus
directly comparable to other integration indices found using dif-
ferent approaches.

All these analyses were performed in Morphol (Klingenberg,
2011) and in the R package ‘geomorph’ (Adams and Otarola-
Castillo, 2013).

Evolution of corolla shape variation, disparity and integration

We tested the evolutionary lability of corolla shape by calcu-
lating its phylogenetic signal and examining how floral traits
changed along the phylogeny. The phylogenetic signal was
tested using Pagel’s A (Pagel, 1999; Freckleton et al., 2002). To
test phylogenetic signal, we compared a model generating an
ML estimate of Pagel’s A for floral traits with a model

9T0Z ‘9T ARe N uo ©d9]01|q1g -epeuelo ap pepseAlun B /5,!0'3 reuino _lpjo;x0'qoe//:d11q wioJj papeo jumoq


http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv194/-/DC1
http://aob.oxfordjournals.org/

892 Gomez et al. — Corolla shape evolution in Brassicaceae

nueIuow i
nejesiol wnssAY
osuependu winssAly

"beris saxatiys saxati
Iberis carnosa Yranatensis
Iberis ciliata welwitschir
Iberis saxatilis cinerea
Aubrieta deltoide2

ymbrium runcinatu’

Sis!
N
i ispanic
prium ausmacum hisp "
isym -
s s'symbriume sl .
l jfoll
i
- moras®
rium i
Sisymb muv\um ir
) )
) omc\na\
® w2\
gey™ . o
o w9?
gy 0 f
c? ©
s i
W U
5‘“0‘) o
» S
o &
o o
,9\0\ 6 )
o' N
Na B &
S 2
2 ,Q’b p
& & L3
& @ )
¥ N
S8 &
& & &EF
' S S I3
CCONC
[ §' £5 I
S 9 o 8 §5 8
S SR N A
3 S s Y e
e fieds
Q@ $ § 8 ,,\? g
o 8§ :
S § 33
S § HE
& § § 3
J 9 S
¥ N
S

Ay N
Wtidocarpus Mmoricandjojdes maroccany

osuajeurib wnssAly

Rytidocarpus moricandioides

§
g & N
3
g 8 § ¢ §
s 3 g § & Y
§ 3 5 § &€ £ § &
S & 8 58 § § & ¢
g & g § & § S
g 2 s d 5 F N
g § § § g & 3§
s 88 5 § 9 o
2 § &8 § § 8 ¢
2 8§ 8§ 5§ § 8 § &
$2sfss s g
= “‘bgg@»@\“’&\\@@
§ &L I o
L § & &
¢ v
v & & ¢ & N
@ N & ¢
S & & F
N R
& o ¢
6\0\ & & @
& ) W
P ¢
NG _6\\3 o
& o R
oV §©
5 o &
® N o
69‘0 o ¢ .
P o
20 (@'
e (@
Sy
\l
A 0
N h\o\a“
At \ e
thi®
al peref‘“'
Jiatiio?
inca
Manmolalﬂc
a
Strigosella african
Hesperis |aciniata
Jethionema marginatum
LAemionema saxatile
Diplotaxis catholica
Ve
‘ella bourg, aeana
Vey;
la Pseudocy[,'s us o
Vea s, . ICensis
Sp/nOSa
apis
b
2 @ Marre,
D/sa/be
s,
0, Ui
%
2 s,
(A o/}v
5, ¢ P54 ]
%
s ),
Sy, )
% %, 2% 728y
S "Q‘P ’0,,0 s, %
D b 5 e,
s W, Joy % "4,
Y % i
S Pe % ¥
% Ry O
>, %, @
s T R
% & S
S @ 0.
RO
S % R %,
SR N .
3 % %
2 sy B >
s % 3 S, >,
0O % % BB S
2 Go%© % @ &,
822 T L % % % %
29228 3T %5 ¢ % %% % 0%
T 3 8 e R OR3P RO
2 g 8 T %R T Y OZH O
2 5 g 8 @ -5 B
= 808 % 0% 2
S 5% ¢ § 8 8 3
- -
§ £ 3 ¢ 8 3%
s 8 3 T o3 °®
1S % )
3 3

Fic. 1. Phylogenetic relationships of the Brassicaceae taxa included in this study.

constraining A to 0. A significant departure from the model
with A =0 would indicate phylogenetic correlation (Freckleton
et al., 2002). We illustrated the phylogenetic signal of the co-
rolla-shape attributes by means of traitgrams (Ackerly, 2009).
Traitgrams arrange species along a continuous trait axis (the
x-axis) and connect them with their underlying phylogenetic
tree (time on the y-axis) (Miinkemidiller ez al., 2012). Internal
node positions correspond to ancestral states obtained by ML.
Node depths reflect phylogenetic branch lengths (Ackerly,
2009). The phylogenetic signals and traitgrams were obtained
using the R package ‘phytools’ (Revell, 2012).

Ancestral state reconstruction of the corolla shape attributes
was done using the ‘ace’ function implemented in the R

package ‘ape’ (Paradis et al., 2004). This function estimates an-
cestral character states, and the associated uncertainty. We in-
cluded phylogenetic uncertainty by doing this analysis with the
set of 100 trees.

Evolutionary allometry of corolla shape variation, integration
and disparity

We estimated the allometry of corolla shape attributes by de-
termining their correlation with corolla size and shape. For this,
in each of 20 individuals per taxon, in addition to quantifying
corolla shape, we also quantified corolla size, as the distance in
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millimetres between the apical edges of two opposite petals.
This is an estimate of the overall size of the Brassicaceae co-
rolla (Gomez et al., 2006). Furthermore, we also measured the
corolla tube length, as the distance in millimetres between the
corolla tube aperture and the base of the sepals.

We explored the correlated evolution between corolla shape
attributes and corolla size using phylogenetic generalized least
square (PGLS) models (Grafen, 1989; Martins and Hansen,
1997). This analysis optimizes the phylogenetic signal while
performing the analysis (Revell, 2010). PGLSs were performed
using the R package ‘caper’ (Orme, 2013).

Pollinator diversity and pollination niches

We conducted flower visitor counts in 1-10 populations per
plant species (Table S1). We visited the populations during the
peak of the bloom, always at the same phenological stage and
between 1100 and 1700 h. Insects were identified in the field,
and some specimens were captured for further identification in
the laboratory. We recorded only those insects contacting an-
thers or stigma and making legitimate visits at least during part
of their foraging at flowers. We did not record those insects
only eating petals or thieving nectar without making a legiti-
mate visit. We grouped the insects visiting the flowers of the
studied species into functional groups. Here, ‘functional group’
is defined as those insects that interact with the flowers in a
similar manner (Fenster ez al., 2004). We used criteria of simi-
larity in body length, proboscis length, morphological
match with the flower, foraging behaviour and feeding habits
(Goémez et al., 2015). Table S3 describes the 35 functional
groups used in this study and Table S4 shows the distribu-
tion of these functional groups among the studied Brassicaceae
taxa.

We described the diversity of the flower visitor fauna of the
studied plants at functional group levels, using two complemen-
tary indices: (1) pollinator richness (Sops), calculated as the
overall number of functional groups recorded in the flowers of
each plant taxon — to control for sampling effort, we divided
the observed S, by the number of flower visitors recorded; (2)
pollinator diversity, calculated as Hurlbert’s PIE, the probabil-
ity that two randomly sampled insects from the community per-
tain to two different functional groups. This is an evenness
index that incorporates the frequency of visitation of pollinators
and combines the dominance and abundance of the species.
These indices were generated using the ‘addpart’ function in R
package ‘stratigraph’ (Green, 2012).

We determined the occurrence of different pollination niches
in our studied populations using bipartite modularity, a com-
plex-network metric. We constructed a weighted bipartite net-
work including only the Brassicaceae taxa with pollinator data.
In this network, we pooled the data from the different conspe-
cific populations. We subsequently determined the modularity
level of this network by using the QuanBiMo algorithm
(Dormann and Strauss, 2014). This method uses a simulated an-
nealing Monte Carlo approach to find the best division of taxa
into modules. A maximum of 10'® Markov chain Monte Carlo
steps with a tolerance level = 107" were used in 100 iterations,
retaining the iterations with the highest likelihood value as the
optimal modular configuration. We tested whether our network

was significantly more modular than random networks by run-
ning the same algorithm in 100 random networks, with the
same linkage density as the empirical one (Guimera and
Amaral, 2005). Modularity significance was tested for each in-
dividual iteration by comparing the empirical versus the ran-
dom modularity indices by means of a z-score test (Dormann
and Strauss, 2014). After testing the modularity of our network,
we determined the number of modules using the approach pro-
posed by Newman (2004). We subsequently identified the polli-
nator functional groups defining each module and the plant
species that were ascribed to each module. Modularity analysis
was performed using R package ‘bipartite’ (Dormann et al.,
2008).

We explored the correlated evolution between corolla shape
attributes and pollinators using PGLS models as explained
above. We performed a separate model for each attribute of co-
rolla shape disparity and integration.

RESULTS
Variation in corolla shape variation, disparity and integration

We found ample between-species variation in corolla shape.
The first PC explained 37 % of the variation in shape and was
related to changes in the parallelism of the petals. Species re-
ceiving positive scores of this component displayed corollas
with the two adaxial petals parallel and the two abaxial petals
also in the same direction, while species having negative scores
displayed corollas with the abaxial and adaxial petals divergent
(Fig. 2). The second PC explained 12 % of the variation in
shape and was related to changes in corolla monosymmetry.
Species with positive scores of this PC displayed corollas with
an overdevelopment of lower petals, whereas those species
with negative scores had corollas with overdeveloped upper
petals (Fig. 2). The third component explained 10 % of the vari-
ation in shape, and was related to changes in petal width.
Species with positive scores had narrow petals, whereas species
with negative scores had wide petals (Fig. 2). The remaining
PCs explained very low variation in corolla shape (Table S5).

The average shape variation of the studied taxa was
0-0025 = 0-001 (mean * 1 s.e.), ranging between 0-01 in some
Biscutella species and 0-067 in Farsetia aegyptia (Fig. 3, Table
S6). Average partial static disparity was 0-009 = 0-001, and
ranged between 0-0007 in Sisymbrium orientale and 0-042 in
Moricandia moricandioides (Fig. 3, Table S6). This low magni-
tude indicates that an average taxon contributes less than 1 % to
the overall disparity of the entire group of taxa. Moreover, the
taxon contributing most contributed only 4-2 % to the overall
disparity. The ten taxa with highest disparity values were
M. moricandioides, Iberis procumbens, Vella pseudocytisus
orcensis, V. spinosa, Brassica souliei, B. tournefortii, Crambe
kralikii, Erysimum lagascae, M. arvensis and E. semperflorens
(Fig. 2).

The across-taxa average corolla shape integration was low
(0-182 = 0-006), representing only 15 % of the maximum pos-
sible integration. Corolla shape integration ranged between
0-081 and 0-363 in Sisymbrium orientale and Brassica souliei,
respectively (Fig. 3, Table S6). Corolla shape integration was
marginally and positively related to corolla shape variation
(1-133+0-578, F=3-84, P=0-054, XA=0-083; PGLS
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Fic. 2. Phylomorphospace of the first three PC axes showing the relationship between the phylogeny and corolla shapes for the Brassicaceae taxa included in this
study. Indicated in red is the position in the shape space of the ten species receiving the highest values of corolla shape partial static disparity.

models), whereas it was not related to partial static disparity
(0-767 = 1-014, t=0-76, P = 0-451, . = 0; PGLS models).

Evolutionary lability of corolla shape variation,
disparity and integration

We found significant phylogenetic signal for corolla shape
variation (Pagel’s A =0-644, P =0-0001). In contrast, the phy-
logenetic signal was not significant for corolla shape disparity
(Pagel’s A =0-001, P=0-900) or integration (Pagel’s
A=0-279, P=0-623). This outcome was strongly consistent
across the set of 100 phylogenetic trees (Table S7).
Accordingly, the traitgrams showed many crossings in the val-
ues of these three corolla shape attributes (Fig. 3).

The reconstruction analysis suggests that the ancestral co-
rollas of the studied Brassicaceae taxa had intermediate values
of variation (0-026 = 0-0001), disparity (0-009 = 0-0003) and
integration (0-174 = 0-002; see Table S8 for the values of the
most recent common ancestor obtained in the 100 phylogenetic
trees, and Supplementary Data 1 for the values obtained in the
whole set of internal nodes). Most changes in these three traits
seem to have occurred very recently (Fig. 4).

Evolutionary allometry of corolla shape variation,
disparity and integration

There was no phylogenetic correlation between corolla size
and the variation, disparity or integration of corolla shape
(Table 1). In contrast, there was a significant correlation be-
tween corolla shape integration and corolla tube length, plant
species with longer corolla tubes having corollas with more in-
tegrated shapes. There was also a significant positive relation-
ship between corolla tube length and corolla shape variation,
species with deeper corollas having more variable shapes
(Table 1).

Pollinator diversity and pollination niches

We recorded 39088 floral visits from 33 pollinator func-
tional groups (Tables S1 and S3; we did not record visits by
earwigs or lacewings). In general, the plant taxa included in this
study had a diverse pollinator assemblage. The mean number
(=1 s.e.) of functional groups visiting each plant taxon was
11-6 = 0-6, whereas the across-taxa mean Hurlbert’s PIE index
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Fic. 3. Frequency distribution of the four estimates of corolla shape variation,
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sociation between the phylogenetic relationships and the values of the corolla
shape variation, disparity and integration.

was 0-61 = 0-03. There was a large difference among plants in
the diversity of their pollinator assemblages. The richness of
functional groups ranged between one in several Matthiola spe-
cies and Hesperis laciniata, which were visited exclusively by
nocturnal moths, and more than 20 in several taxa from the gen-
era Sinapis, Brassica, Erysimum and Cakile. Similarly, PIE val-
ues ranged between O for Matthiola and more than 0-90 for
Cakile maritima, Erysimum baeticum, Iberis saxatilis and
Erysimum mediohispanicum.

The network between the Brassicaceae species and the polli-
nator  functional groups was significantly modular
(Modularity = 0-477 = 0-001, all P-values < 0-0001, n =100 it-
erations; Table S9). Modularity analysis detected eight pollina-
tion niches (niches A-H in Fig. 5). Plants from niche A were
visited mostly by hovering long-tongued flies (i.e. Bombylius
spp.), plants from niche B were visited mostly by butterflies
and extra-large long-tongued bees (mostly Bombus spp.), plants
from niche C were visited by nocturnal moths, plants from
niche D were visited mostly by long-tongued large bees (mostly
Anthophoridae), plants from niche E were mainly visited by
short-tongued large bees and honeybees, plants from niche F
were visited mostly by flies and ants, plants from niche G were
visited mostly by small beetles and plants from niche H were
visited mostly by small bees (Fig. 5).

There was between-niche difference in the generalization de-
gree (Sops: F=3-15, d.f.=7,89, P <0-005; Hurlbert’s PIE:
F=991, df.=7,89, P<0-0001; PGLS models). Plants be-
longing to niche C were visited by pollinator assemblages with
very low diversity (Fig. S1), composed mostly of nocturnal
moths (Fig. 5). In the other extreme, plants from niche E had
highly diverse pollinator assemblages (Fig. S1). Plants from the
remaining niches had pollinator assemblages with intermediate
diversities (Fig. S1).

Relationship between corolla shape and pollinators

We did not find any significant relationship between pollina-
tor diversity and corolla shape variation, disparity or integration
(Table 2). In contrast, we found significant between-niches dif-
ferences in all these three attributes for corolla shape (Table 2).
Plants from niche C had significantly higher corolla shape vari-
ation than plants from any other niche (Fig. 6). Corolla shape
disparity was significantly higher in plants from niches C, D
and G (Fig. 6). Corolla shape integration was significantly
higher in plants from niches A, D and E and significantly
smaller in plants from niche C (Fig. 6).

DISCUSSION

The low magnitude of corolla shape disparity and
integration in Brassicaceae

The magnitude of integration found in this study for the shape
of the corollas was lower than those reported in other plants.
The average across-taxa corolla shape integration was 15 % of
the maximum possible integration, whereas the taxa having
maximum integration had only 36 % of the maximum possible
integration. These values are much lower than those found in
plant species belonging to other families (Pérez et al., 2007,
Ordano et al., 2008; Rosas-Guerrero et al., 2011; Ishii and
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TABLE 1. Outcome of the PGLS models testing the relationship between the variation, disparity and integration of corolla size and
corolla tube length; significant values appear in bold type

Corolla size Corolla tube length
Estimate = 1 s.e. Fi 100 P Estimate = 1 s.e. Fi 100 P
Corolla shape variation —0-006 = 0-003 1-67 0-097 0-001 = 0-000 236 0-020
Corolla shape disparity —0-001 = 0-003 0-31 0-758 0-002 = 0-002 1-02 0-307
Corolla shape integration —0-002 = 0-002 0-49 0-623 0-006 = 0-003 2:09 0-039

Harder, 2012; Gonzalez et al., 2015; but see Pérez-Barrales
et al., 2014). Several concurrent reasons may cause the low in-
tegration values observed in Brassicaceae corollas.

Brassicaceae have heterochlamydeous flowers with separate
and unfused sepals and petals (Taiyan er al., 2001; Singh,
2010). This architectural pattern favours the independent move-
ments and arrangement of the different organs of the perianth,
both during ontogeny of the flower and once the flower is fully
developed as a consequence of external environmental factors.
This is no doubt a main architectural and non-functional factor
determining the low integration observed in Brassicaceae
corollas.

Low corolla shape integration may also be a consequence of
the pollination systems of the species included in this study.
Most Brassicaceae species were extremely generalist in their in-
teractions with pollinators. The number and diversity of insects
visiting their flowers was very high even within plant popula-
tions. Due to their differences in morphology, foraging behav-
iour and preference pattern, this diversity of pollinators surely
prompts the occurrence of conflicting selection on corolla shape
(Galen and Cuba, 2001; Medel er al., 2003; Gomez et al.,
2008). Under these circumstances, the local coexistence of sev-
eral pollinator functional groups will negate the selection on
any single type of corolla, a scenario preventing the evolution
of highly integrated corollas (Gomez et al., 2014).

The magnitude of corolla shape integration found in our
study was even lower than those reported for other
Brassicaceae species (Murren er al., 2002; Anderson and
Busch, 2006; Penrod, 2010; Edwards and Weinig, 2011). For
example, Penrod (2010) found that Brassica nigra floral inte-
gration ranged between 0-40 and 0-56. In contrast, the magni-
tude of B. nigra corolla shape integration found in our study
was 0-32. We believe that these discrepancies may be partially
related to the analytical procedure used to obtain the integration
indices. An important difference between our study and most
other studies on floral integration is that we have studied a trait
related to organ shape rather than to organ size and we have
thereby used tools from geometric morphometrics to explore
the integration of corolla shape, whereas most other studies
have calculated floral integration from standard linear measure-
ments. Because variation in each linear measurement contains a
considerable degree of floral size variation, linear measure-
ments tend to be integrated by this shared variation of size.
This component of variation can capture a large part of the vari-
ance because it is generally associated with between-individual
variation in resource acquisition (Torices and Méndez, 2014),
and it is thereby the one generating a very strong integration in
most standard studies of morphological integration. By concen-
trating exclusively on shape variation and removing size

variation as part of the Procrustes superimposition, we removed
this component of phenotypic variation, a procedure probably
contributing to the observed low corolla shape integration for
shape. Our estimates of phenotypic integration, although low,
can be considered robust estimations after excluding biases
due to between-individual differences in resource availability.
This reasoning suggests that phenotypic integration will pre-
sumably be lower in analyses of shape than in analyses that
characterize morphology by the sizes of floral parts. In this re-
spect, the magnitude of floral integration found in this study is
similar to that found in other geometric morphometric studies,
studying both Brassicaceae species (Gomez et al., 2014) and
other disparate organisms (Young, 2006; Gomez-Robles and
Polly, 2012).

Corolla shape disparity was also very low for the studied
Brassicaceae taxa. In fact, average corolla shape disparity was
less than 1 %, and the plant having the most distinctive corolla,
Moricandia moricandioides, contributed only 4-2 % of the over-
all disparity of corolla shapes. Because static disparity measures
within-species variation as a fraction of the total disparity, these
observed low values indicate that most variation in corolla shape
occurs among taxa rather than within taxa. This suggests that
taxa are relatively constant, but have markedly diverged from
each other at similar rates. Low corolla shape disparity may oc-
cur because the corolla shapes of different taxa have diverged
along contrasting axes of the morphospace. Some species, such
as M. moricandioides and Erysimum lagascae, have corollas
with parallel petals and high positive values in PC1. Other taxa,
such as Vella species, have corollas with very open petals and
high negative values of PC1. Some other taxa, such as Farsetia
aegyptia and species of Matthiola and Eruca, have corollas with
extremely narrow petals and high positive values of PC3.
Finally, taxa belonging to the genus /beris have zygomorphic
corollas with high positive values of PC2. Under this scenario,
there is not a large group of taxa with very similar corollas coex-
isting with a small subset of species having distinctive corollas
and thereby exhibiting high values of corolla shape disparity. In
contrast, the study system is composed of a large number of
taxa with distinctive corollas but exploring the floral morpho-
space along different directions. There is large among-taxon var-
iation in corolla shape even in this plant family characterized by
a conserved floral bauplan (Franzke et al., 2011).

Evolutionary lability of the variation, disparity and
integration of Brassicaceae corolla shape

The phylogenetic signal was not significant for the integra-
tion and disparity of Brassicaceae corolla shape. Low
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Fic. 5. Plot showing the classification of the studied species into different pollination niches, according to the analysis of bipartite modularity QuanBiMo. The inten-
sity of the colours indicates the relative abundance of each flower visitor’s functional group per plant taxon.
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TABLE 2. Outcome of the PGLS models testing the relationship between pollinators and corolla shape variation, disparity and integra-
tion, significant values are in bold type

Sobs Hurlbert’s PIE Pollination niche
Estimate £ 1 s.e. Fios P Estimate £ 1 s.e. Fios P F789 P
Corolla shape variation 0-000 = 0-000 0-60 0-456 —0-005 = 0-004 1-59 0-210 461 0.0002
Corolla shape disparity —0-001 = 0-003 0-04 0-950 —0-001 = 0-002 0-09 0-760 241 0.024
Corolla shape integration -0-000 = 0-000 0-41 0-523 0-001 = 0-024 0-03 0-857 3.07 0.006

phylogenetic signal may be caused by measurement errors re-
lated to the uncertainty of the phylogenetic relationships of the
taxa included in the analyses (Blomberg et al., 2003; Ives et al.,
2007). However, because we built the phylogeny using several
nuclear, mitochondrial and plastidial genes and performed the
analysis using a set of 100 trees, we think that the observed low
phylogenetic signal is actually evidence of evolutionary lability
in Brassicaceae floral integration and disparity (Losos, 2008). It
seems that the floral disparity and integration of a given
Brassicaceae taxon is not associated with the floral integration
and disparity displayed by its relatives. The evolution of floral
disparity and integration seems not to be strongly constrained
by phylogenetic inertia in Brassicaceae. This pattern is clearly
illustrated in the traitgrams, which show many lines crossing.
Evolutionary lability is frequent in floral traits (Beardsley ez al.,
2003; Smith et al., 2008; Roncal et al., 2012; Alcantara and
Lohmann 2010; McEwen and Vamosi, 2010; Muchhala et al.,
2014), and it has been recently found for the phenotypic inte-
gration of Erysimum corolla shape (Gomez et al., 2014). As
pointed out by Franzke ez al. (2011), most traits in Brassicaceae
exhibit substantial homoplasy.

We have found, however, significant phylogenetic signal for
corolla shape variation. Intraspecific variation in corolla shape
could be a consequence, at least partially, of the loss of canali-
zation and the presence of developmental noise. Under this per-
spective, intraspecific variation can be a manifestation of the
lack of developmental robustness. Although flowers appear to
show more stable development than other plant organs (Sherry
and Lord, 1996; Evans and Marshall, 1996), they also undergo
some degree of developmental noise. We presume that taxa
showing high values of corolla shape variation will be those be-
ing more susceptible to developmental noise, probably due to
relaxation of the stabilizing selection for canalization and de-
velopmental robustness in those lineages. In contrast, taxa with
low corolla shape variation will be those showing stronger de-
velopmental robustness. The ability to buffer developmental
noise has a genetic basis in many organisms (Gavrilets and
Hasting, 1994). Canalization thereby could result from evolu-
tion, whether adaptive or non-adaptive (Flatt, 2005). Our result
suggests that the evolution of developmental robustness in
Brassicaceae is influenced by phylogenetic relatedness, with
plants belonging to the same lineages having a similar ability to
cope with developmental noise.

The role of pollinators in the evolution of corolla shape
variation, disparity and integration in Brassicaceae

Our study has found ample across-taxa variability in corolla
shape variation, disparity and integration. Indeed, corolla shape

integration varied among the crucifer taxa included in this study
by more than two orders of magnitude, between 0-002 and
0-363, whereas corolla shape disparity varied over one order of
magnitude, from 0-07 to 4-2 %. Variation in corolla shape has
been reported for some Brassicaceae, such as Lepidium
(Bowman et al., 1999), Erysimum (Gémez et al., 2014) and
several genera from the tribe Brassiceae (Takahata, 2009).
Similarly, variation in floral integration has been also reported
among Brassicaceae species belonging to the genera Brassica
(Murren et al., 2002), Leavenworthia (Anderson and Busch,
2006) and Erysimum (Gémez et al., 2014). Knowing which fac-
tors are associated with this pervasive variation will surely help
to discover the causes driving the evolution of floral integration
and disparity in Brassicaceae. Several non-exclusive reasons
suggest that pollinators may play a role in the evolution of co-
rolla shape variation, disparity and integration at higher taxo-
nomic level.

First, the observed evolutionary lability in corolla integration
and disparity may be a consequence of the selection exerted by
pollinators. Although several genetic and ecological factors
cause evolutionary lability (Losos, 2008; Bell, 2010; Cooper
et al., 2010; Crisp and Cook, 2012), low phylogenetic signal
can be produced by punctuated divergent selection, a process
occurring when daughter lineages face different selective sce-
narios and evolve to two different optima after every bifurca-
tion (Revell er al., 2008; Ackerly, 2009). Under this scenario,
low phylogenetic signal is expected when there is recurrent
short-term variation in pollinator-mediated selection (Beardsley
et al., 2003; Omelas et al., 2007; Wilson et al., 2007; Harder
and Johnson, 2009). Goémez et al. (2014) suggested that low
phylogenetic signal in Erysimum corolla shape integration is as-
sociated with recurrent shifts in pollination niches.

Second, our reconstruction analysis suggests that the changes
in Brassicaceae corolla shape occurred very recently. So, the re-
constructed corollas of the deep internal nodes were all very
similar, whereas most changes in integration and disparity ap-
peared in shallow internal nodes. This evolutionary pattern sug-
gests that forces acting at the ecological time scale, rather than
forces associated with deep phylogenetic relationships, may
have driven the observed evolution in corolla shape integration
and disparity.

Third, the absence of any correlation between floral integra-
tion or disparity and corolla size indicates that no allometric ef-
fect influences the evolution of these characters in our studied
taxa. Allometry is a factor that may greatly affect phenotypic
integration (Klingenberg and Marugan-Lobdn, 2013). In fact,
allometry has been proposed as the factor fuelling interspecific
changes in character shape in the absence of any adaptive
mechanism (Herrera, 1992). Under these circumstances, we
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presume that the evolution of corolla shape integration and dis-
parity, not being associated with allometric effects, is prompted
by the effect of some selective forces.

Finally, and most importantly, we found a significant phylo-
genetic association between floral integration and disparity and
pollinators. Contrary to previous studies (Pérez-Barrales et al.,
2007; Pérez et al., 2007; Gémez et al., 2014), we have not
found any association between corolla integration and pollina-
tor diversity. This result is probably a consequence of having
included in our study very disparate plant taxa belonging to dif-
ferent lineages. The effect of pollinator diversity on corolla
shape integration may be only evident within plant lineages.
However, we did find a significant association between pollina-
tion niche and corolla shape variation, disparity and integration
of each plant taxon. This outcome suggests that the type of pol-
linator visiting the flowers, rather than the diversity, has a major
effect on the evolution of floral integration and disparity
(Pérez-Barrales et al., 2014; Gonzalez et al., 2015). This is a re-
markable finding, as the effect of pollinators on phenotypic in-
tegration is expected to be more intense for those traits related
to the efficiency of pollen transfer (anthers, pistils, stigmas)
than for traits related to the attraction of pollinators (Ordano
et al., 2008).

Corolla shape variation was significantly higher in those taxa
belonging to a pollination niche where nocturnal moths are the
main floral visitors (niche C in our study). Furthermore, we
found that plants from niche C had a significantly higher co-
rolla shape disparity, suggesting that plant taxa pollinated
mostly by moths not only have highly variable but also very
distinctive corollas. This pollination niche comprises species
from the genus Matthiola, as well as Hesperis laciniata and
Farsetia aegyptia. These species are characterized as having
flowers where petals are arranged in a variety of positions,
sometimes forming very odd shapes (Fig. 7), and this variance
occurs not only between individuals but also within individuals
(authors’ pers. obs.). We presume that because the main polli-
nators of these taxa are nocturnal insects, selection on corolla
shape developmental robustness and canalization is weak, re-
sulting in high shape variation. Great variation in corolla shape
also occurs in other Brassicaceae species presumably pollinated
by moths, such as Hesperis tristis (Lovell, 1902; Faegri and van
der Pijl, 1979) or those from the tribe Schizopetalae (Toro-
Niufez et al., 2015). Note that all these species do not close
their corollas during the day, in contrast to other moth-
pollinated species; thus, the shapes studied here are the actual
shapes of the corollas of these species.

Corolla integration was higher in those plants belonging to
pollination niches composed of hovering long-tongued flies
mostly belonging to the genus Bombylius (niche A in this study)
and of long-tongued large bees mostly belonging to the genus
Anthophora (niche D). These two types of insects have been
shown to be very effective pollinators of several species of
Brassicaceae (Motten, 1986; Kuchmeister et al., 1995;
Kastinger and Weber, 2001; Ollerton et al., 2007; Gémez et al.,
2010; Lay et al., 2011; Fernandez et al., 2012). In addition,
their behaviour at flowers differs from that displayed by most
other Brassicaceae pollinators. They use hovering to approach
the flowers, frequently touching the petals only slightly and us-
ing the entire corolla as landing platforms. Hovering is energeti-
cally costly (Heinrich, 1993), and these insects probably try to
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Fic. 7. Intrapopulation variation in the corolla shape of Farsetia aegyptia.
Photographs were taken during January 2015 at Petra (Jordan).

decrease this cost by changing their behaviour at flowers. For
example, beeflies, which collect nectar while hovering but
stand on their second and third pairs of legs to decrease the cost
of hovering, prefer to visit rounded Erysimum mediohispanicum
corollas because they can use this type of corolla as an efficient
landing platform (Gomez et al., 2008). By choosing very spe-
cific corolla shapes, we presume that beeflies have been select-
ing for more integrated corollas. According to the current
results, the anthophorid bees have presumably prompted the
evolution of more integrated corollas in Brassicaceae as well. It
is remarkable that these two types of pollinators are long-
tongued insects, visiting the Brassicaceae flowers mostly to
consume nectar. This can explain the significant and consistent
relationship found across Brassicaceae taxa between corolla in-
tegration and the depth of their corolla tube. Pollinators are not
only driving the evolution of corolla integration but also its cor-
relational evolution with corolla tube length.

CONCLUSION

This study shows that corolla adaptive evolution is even possi-
ble in a plant family having a very conserved floral bauplan. In
fact, it seems that the shape of the Brassicaceae corolla has, at
least partially, evolved as a consequence of the selective pres-
sures exerted by some pollinators. This adaptive process has re-
sulted in multiple convergences and divergences along the
phylogeny of Brassicaceae, causing corolla shape to be a trait

more evolutionarily labile than traditionally thought. Extending
this study to species from other lineages and inhabiting distant
geographical areas would provide precious information on how
pollinators propel the successful colonization of the floral mor-
phospace in Brassicaceae.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour
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Brassicaceae species and subspecies included in this study.
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