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Using endemic-plant distribution, geology and geomorphology
in biogeography: the case of Sardinia (Mediterranean Basin)
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Centro Conservazione Biodiversita (CCB), Dipartimento di Scienze della Vita e dell’Ambiente, Universita degli Studi di Cagliari,
Viale Sant’Ignazio da Laconi, 11-13, [-09123, Cagliari, Italia

(Received 18 July 2013; revised 9 January 2014; accepted 10 February 2014)

The importance of robust systems for classifying biogeographical patterns has been emphasized for its usefulness in
designing conservation strategies. For such purposes, the distribution patterns of the endemic flora have often been used.
Several studies have identified phytogeographical units within Sardinia (western Mediterranean); however, the main part of
the island remains unstudied. Thus, the aim of this study is to lay out a comprehensive biogeographical scheme for Sardinia
based on endemic vascular plant distributions, together with geological and geomorphological units. We georeferenced, in
a 1-km? grid cell, the presence of 290 vascular endemic taxa from the literature, herbarium specimens and field
investigators’ research. Sardinia was subdivided into 31 homogeneous units through the integration of geological and
geomorphological maps and, subsequently, a presence—absence matrix of endemic taxa in each unit was built. Hierarchical
cluster analysis was performed to define two levels of biogeographical units (i.e. sectors and subsectors). For each unit the
exclusive and differential endemic taxa were identified. For sectors, indicator species were explored by the Indicator Value
(Ind Val) analysis and relationships were analysed by quantitative interaction web. A total of six sectors and 22 subsectors
were identified. The highest endemic plant richness was found in the Campidanese-Turritano, Sulcitano-Iglesiente and
Supramontano sectors, and in the Gennargenteo, Barbaricino, Iglesiente and Sulcitano subsectors. All sectors were
characterized by the presence of exclusive, differential and indicator taxa. The interaction analysis showed the highest
uniqueness in endemic flora in the Supramontano and Sulcitano-Iglesiente sectors, which hosted a high number of
exclusive endemic species. Mostly mountainous sectors/subsectors had higher endemic-species richness compared with
lowland ones. The study showed the relevance of geology and geomorphology, together with accurate data on endemic
distribution, to define consistent phytogeographical units. Furthermore, the biogeographical scheme presented here helps to
define area-based conservation strategies in Sardinia.

Keywords: conservation, continental island, endemic plant richness, geology, geomorphology, Mediterranean vascular
flora

Introduction Moreno Saiz et al., 2013), and in particular of endemic
flora (e.g. Rivas Martinez et al., 1997; Garcia Barros
et al., 2002; Santa Anna Del Conde et al., 2009; Medina-
Cazorla et al., 2010; Gonzalez-Orozco et al., 2013) has
often been used to describe biogeographical schemes.

The spatial distribution of endemic species is not random
(e.g. Laffan & Crisp 2003; Tribsch, 2004; Casazza et al.,
2008; Essl et al., 2009); but is uneven across the world’s
land areas, with endemic species often being concentrated
in specific regions or habitats (Trigas et al., 2012). Several
factors shape endemic distribution patterns, such as area,
biotic interactions, stochastic events, habitat diversity, isola-
tion and human impact (e.g. Lobo et al., 2001; Willerslev
et al., 2002; MacMaster, 2005; Panitsa et al., 2006; Casazza
et al., 2008; Duarte et al., 2008). In addition, the current dis-
Corresponding author: Eva M. Canadas. E-mail: ecanadas@ugr.es tribution of endemic species on continental Mediterranean

Biogeography is a comparative science that attempts to
describe and explain spatial patterns of biological diver-
sity on Earth, with respect to its geological history and
how these patterns change over time (Lomolino et al.,
2006; Parenti & Ebach, 2009). In recent years, the impor-
tance of robust systems seeking to classify biogeographi-
cal patterns has been emphasized (Whittaker et al., 2005;
Mackey et al., 2008; Kreft & Jetz, 2010) for their useful-
ness in conservation planning (e.g. Mackey et al., 2008
and references therein; Luna-Vega et al., 2013). In this
sense, distribution patterns of the vascular flora (e.g.
Rivas-Martinez et al., 2002; Moreno Saiz & Lobo, 2008;
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islands is related to the fact that palacogeography is the
product of colonization events from the mainland during
temporary land connections, followed by in situ diversifica-
tion (e.g. Mansion et al., 2008; Salvo et al., 2010). Further-
more, geology and geomorphology are important factors
determining endemic distribution patterns (e.g. Tribsch &
Schonswetter, 2003; Valente & Vargas, 2013); indeed, bed-
rock chemistry has been shown to be significant for the
delimitation of biogeographical units in several studies on
mountain plants of south-eastern France (Médail &
Verlaque, 1997), southern Spain (Mota et al., 2002) and the
Swiss Alps (Wohlgemuth, 2002), among others.

The Mediterranean Basin hosts an especially diverse
flora due to its particular palacogeography, climatic condi-
tions, habitat heterogeneity and the varying origins of the
flora itself (e.g. Médail & Quézel, 1997; Thompson, 2005;
Blondel & Médail, 2009; Trigas et al., 2012). Specifically,
Mediterranean islands and islets are not only singular for
their species richness, but also for the high endemicity
rates (Rossello et al., 2009).

Sardinia and its c¢. 300 circum-Sardinian islands
(including four archipelagos), covering 24090 km?, are
situated in the western Mediterranean basin. The Sardin-
ian flora consists of 2408 taxa (Conti ef al., 2005), 171 of
which are exclusively endemic (Bacchetta ef al., 2012b),
the particular geological history of the island being a
determining factor of the floristic peculiarities. Thus,
before the early Oligocene, Sardinia (and Corsica) was
situated adjacent to current southern France, forming a con-
tinuous geological entity (part of the so-called Hercynian
massif) which subsequently fragmented into microplates
that dispersed throughout the western Mediterranean
(Alvarez et al., 1974). The tectonic separation of Sardinia
from Corsica (which shared great floristic affinity, with 90
Sardo-Corsican endemic taxa; Bacchetta et al., 2012a)
began at 15 Ma and was complete by 9 Ma (Cherchi &
Montadert, 1982), although episodic contacts occurred
(Lambeck & Purcell, 2005; Gover et al., 2009; Salvo
et al., 2010). The prolonged isolation and high geological
diversity created a wide range of habitats, with high num-
bers of endemic species, especially on its mountain mas-
sifs (Médail & Quézel, 1997).

From a biogeographical standpoint, Rivas-Martinez
et al. (2002) considered Sardinia to be a subprovince that,
together with Corsican and Tuscano-Calabrian subprovin-
ces, constitutes the Italo-Tyrrhenian province. However,
owing to the many similarities, other authors have sug-
gested the rank of biogeographical province for Sardinia
and Corsica, within an Italo-Tyrrhenian superprovince,
which extends over the western coast of the Italian Penin-
sula, from Liguria to Calabria (Ladero Alvarez et al.,
1987; Bacchetta & Pontecorvo, 2005). More recently,
Bacchetta et al. (2012a) proposed to consider Sardinia,
Corsica and the Tuscan Archipelago as an independent
biogeographical province.

Based on vascular endemic flora, several studies have
identified biogeographical units (sector, subsectors and
districts) within the island of Sardinia (e.g. Bacchetta &
Pontecorvo, 2005; Bacchetta, 2006; Fenu & Bacchetta,
2008; Angius & Bacchetta, 2009; Fenu et al., 2010; Bac-
chetta et al., 2013); however, the main part of the island
(c. 85% of the total surface) still lacks a detailed bio-
geographical study.

Thus, the aim of the present work was to lay out a com-
prehensive biogeographical scheme for Sardinia based on
a spatially detailed and comprehensive dataset of endemic
vascular plant distributions, together with geological and
geomorphological units. Additionally, we aim to identify
the most endemic-rich areas and to explore the relation-
ships among the biogeographical units.

Materials and methods

Floristic data

The checklist of Sardinian endemic vascular plants was
taken from Bacchetta et al. (2012a, b) by selecting the
290 endemic taxa (Appendix S1, see online supplemental
material, which is available from the article’s Taylor &
Francis Online page at http://dx.doi.org/10.1080/
14772000.2014.894592), which were Sardinian (183 taxa,
including 12 new endemic taxa described in Sardinia in
the last years) and Sardo-Corsican (90 taxa), as well as
taxa also present in the Tuscan Archipelago (17 taxa). We
georeferenced the presence of endemic taxa from the
available literature (105 studies with 3980 records on 216
taxa), as well as from herbarium specimens conserved in
several botanical museums (CAG, CAT, FI, RO, SASSA,
SS, TO) and from the Sardinian Germplasm Bank (BG-
SAR) database (1158 records on 171 taxa). Finally,
53450 records on 139 taxa, from the authors’ field
research (including unpublished data), were incorporated
into the database. The final dataset included 2431 records
(on 106 taxa) accurately georeferenced, as well as 51019
records georeferenced to 1-km? grid cells (of 43 wide-
spread endemics). All records were checked for plausibil-
ity by the authors.

Definition of biogeographical units

Initially, a presence—absence matrix was built by ascribing
the georeferenced data of endemic taxa to geological units
of Sardinia (60 171 units; Carmignani et al., 2001). After-
wards, we removed duplicate taxon records in each unit.
Preliminary hierarchical clustering showed that consider-
ing each geological unit independently led to uninterpret-
able results with regard to geographical coherence, as
reported in previous studies (e.g. Reyjol et al., 2007).
Accordingly, basic geological units were grouped into
homogeneous polygons through the integration of
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geological (Carmignani et al., 2001) and geomorphologi-
cal maps of Sardinia (Ulzega, 1988), with a minimum sur-
face area of 780 km?; some limits were adjusted using
elevation or other cartographic sources (e.g. hydrographic
and land-use maps). Thus, small units were grouped
according to similar or identical geological substrates
being part of a common structure, regarding origin or
topographical features (e.g. mountain range, valley), using
a GIS software. Subsequently, a new presence—absence
data matrix was built from the total 31 polygons and the
59232 records on endemic taxa (31 polygons x 1566
records, after removing duplicates). Spatial information
was processed using QGIS 1.7.4 (Quantum GIS Develop-
ment Team, 2012).

The data matrix was analysed by a hierarchical cluster
analysis using ‘hclust’ function, included in the R vegan
package (Oksanen et al., 2012). Euclidean distance and
arithmetic averages were used as clustering options, since
they provided interpretable results. This analysis was per-
formed following the procedure successfully tested by
other authors (Reyjol et al.,, 2007; Reygondeau et al.,
2012), by selecting two cut-off levels to define two levels
of biogeographical units (sectors and subsectors hereaf-
ter). The resulting units were named in relation to local
toponymy, according to the system proposed by Rivas
Martinez et al. (1997).

The indicator species of the identified sectors were
explored by the IndVal (Indicator Value) procedure
(Dufréne & Legendre, 1997), using the ‘indval’ function,
which is included in the R labdsv package (Roberts,
2012). This function identifies the most characteristic taxa
of each unit, i.e. taxa found mostly in a single unit and
present in the majority of sites belonging to that unit. In
addition, the endemic taxa that were mostly but not
entirely restricted to a sector or subsector, i.e. a species
might be found in one or two non-adjacent geological
units outside its primary sector, were identified (differen-
tial taxa hereafter) following a similar approach used in
previous studies (e.g. Laffan ef al., 2013).

Finally, to show relationships among Sardinian endem-
ics and sectors, a graphic quantitative interaction web was
produced using the R bipartite package (Dormann et al.,
2009). All statistical analyses were performed using the R
statistical package (R Development Core Team, 2012).

Results

A total of six biogeographical sectors and 22 biogeograph-
ical subsectors were identified (Figs 1-2). Only in the
Gennargenteo sector was no subsector identified.
Although the surface area varied among units (for sec-
tors as well as subsectors; Table 1), the highest endemic
plant richness was found in the Campidanese-Turritano
(166 taxa), Sulcitano-Iglesiente (129 taxa), Supramontano

(117 taxa) and Gennargenteo (116 taxa) sectors. At the
subsector level, the highest endemic plant richness was
found in the Gennargenteo (116 taxa), Barbaricino (98
taxa), Iglesiente (83 taxa), Sulcitano (82 taxa) and Supra-
montano (79 taxa) subsectors. An exceptionally high
number of endemic taxa in relation to its small surface
area was found in the Tavolarino subsector (44 taxa in a
surface area of c. 9 km?; Table 1).

All sectors were characterized by the presence of exclu-
sive endemic taxa, ranging from two to 33 taxa, as well as
by differential endemic taxa, ranging from two to 23 taxa
(Table 1). The sector with the highest number of exclusive
species was the Sulcitano-Iglesiente (33 taxa), followed
by the Campidanese-Turritano (31 taxa) and Supramon-
tano (14 taxa) sectors. Also, exclusive taxa were present
in all subsectors, except in Nuorese and Ogliastrino
(Table 1), reaching a maximum of six (Sulcitano, Turri-
tano and Marghino-Logudorese), seven (Iglesiente and
Maddalenino) or eight taxa (Gennargenteo).

By applying indicator-species analysis, we found that
some species had a significant preferential distribution in
some sectors (Table 1). Specifically, four sectors included
at least seven indicator species (Barbaricino, Sulcitano-
Iglesiente, Supramontano and Gennargenteo), while
Goceano-Logudorese and Campidanese-Turritano were
characterized by only one taxon (Table 1).

The quantitative interaction web between sectors and
endemic taxa is presented (Fig. 3). The black bar width is
proportional to Sardinian endemic richness of the sectors
(left bars) or to the frequency of endemic taxa in the sec-
tors (right bars). This graph shows the floristic relation-
ships among sectors; in particular the Sulcitano-Iglesiente
and the Supramontano are the most different from each
other (maximum distance), with the greatest endemic
uniqueness. In addition, this analysis highlights that all
sectors were characterized by the presence of exclusive
and differential endemic taxa (see Table 1 for details),
whereas species such as Vinca sardoa, Oenanthe lisae,
Quercus ichnusae, Santolina insularis and Dianthus sar-
dous were among the most frequent in the sectors (Fig. 3).

Discussion

The study showed the relevance of geology and geomor-
phology to define consistent phytogeographical units,
since the identified units hosted both exclusive and shared
endemic taxa. In particular, six biogeographical sectors
and 22 subsectors were defined for Sardinia and the cir-
cum-Sardinian small islands (including four archipela-
gos). This is the first study available to define
biogeographical units at a small scale on a Mediterranean
islands system, based on accurate distribution pattern of
endemic vascular flora.

The biogeographical scheme identified in this study, on
the basis of all the Sardinian endemics, was congruent
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Height

Cretaceous
carbonatic shelf
deposits of Eastern
complex Sardinia succession

Internal nappes
of Hercynian
metamorphic

Hercynian Ordovician and Quaternary deposits Triassic and

intrusive complex Carboniferous and Tertiary Cretaceous marine
and Tertiary external fold and volcanic and and transitional
volcanic cover thrust belt sedimentary cover successions

Fig. 1. Dendrogram derived from hierarchical cluster analysis showing two cut-off levels to define sectors and subsectors, as well as
geological features. Characteristics of each geological unit, according to Carmignani et al. (2001): (0) Metalimestones and metasand-
stones of Lower Cambrian; (1) Oligocene-Miocene calcalkaline volcanic cycle; (2) Carboniferous quartzites and granites; (3) Coastal
metalimestones and metasandstones of Lower Cambrian; (4) Ordovician-Carboniferous metasandstones and metasiltstones; (5) Coastal
Ordovician metasandstones; (6) Quaternary conglomerates, sand and mud deposits; (7) Tertiary basalts and limestones; (8) Quaternary
conglomerates, sand and mud deposits; (9) Oligocene-Miocene calcalkaline volcanic cycle; (10) Post Middle Eocene-Lower Miocene
continental and marine deposits; (11) Cenozoic continental and marine deposits; (12) Basaltic plateaus and rhyolitic uplands of Pliocene
lying on post Middle Eocene-Lower Miocene marls, sands and siltstones; (13) Triassic-Cretaceous carbonatic shelf deposits; (14):
Palaeozoic paragneisses and alkaline metagabbroes; (15) Coastal granites; (16) Para-Sardinian islands of granitic origin; (17) Para-Sar-
dinian island of dolomitic origin; (18) Hercynian granitic basement; (19) Hercynian metamorphic complex; (20) Upper Cretaceous dolo-
mitic uplands; (21) Upper Cretaceous carbonatic mountains; (22) Upper Cretaceous dolomitic uplands with a Devonian-Carboniferous
terrigenous basement; (23) Middle Cambrian-Lower Odovician micaceous metasandstones and quartzites; (24) Upper Carboniferous-
Permian tonalitic granodiorites; (25) Metamorphic rocks of Ordovician-Carboniferous origin; (26) Upper Carboniferous-Permian tona-
litic granodiorites; (27) Hercynian granitic mountains; (28) Upper Cretaceous carbonatic coast; (29) Oligo-Miocenic andesites and
ignimbrites spaced out by Miocenic silty and sandy marls; (30) Paragneisses and Pliocenic rhyolite.

with the results of partial studies carried out in some flo-
ristic territories within the island (Bacchetta & Ponte-
corvo, 2005; Bacchetta, 2006; Fenu & Bacchetta, 2008;
Angius & Bacchetta, 2009; Fenu et al., 2010; Bacchetta
et al., 2013), although some minor differences at the sub-
sector level were found.

Several units were well defined, not only because of the
endemic flora that they shared, but also because they
owned a high number of exclusive, differential and

indicator endemic taxa. On the contrary, the definition of
other units was less conclusive (i.e. the Campidanese-Tur-
ritano sector and their subsectors), since they are charac-
terized by scarcity of exclusive or indicator endemic taxa.
This result could be due to geology, geomorphology and
historical constraints (e.g. Jansson, 2003; Casazza ef al.,
2008), but also to be a territory with high level of
anthropic alteration (which can cause the loss of endemic
plants) or still not thoroughly investigated.
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Fig. 2. Biogeographical regionalization in sectors (a) and subsectors (b) of Sardinia based on the distribution of endemic vascular plants.

Our results show that the mountainous subsectors main-
tain higher endemic species richness compared with low-
land ones. Higher endemic-species richness in the
mountainous areas could be attributed to increased eco-
logical isolation, altitudinal range or higher habitat diver-
sity (Médail & Quézel, 1997; Thompson, 2005; Fenu
et al., 2010; Trigas et al., 2012; Bacchetta et al., 2013;
Canadas ef al., 2014). In addition, these areas have a high
level of naturalness and low human pressure.

Island geology has been recognized to be a strong deter-
minant of species numbers (Kreft et al., 2008). In this
sense, for example, in the Sulcitano-Iglesiente sector the
complex palacogeography (these areas have constituted
islands for long periods) and geological history (i.e. Palae-
ozoic limestones and dolomites in the Iglesiente subsec-
tor, Palaeozoic autochthonous siliceous rocks such as
metapelites, metacalcites and metasiltites in the Sulcitano
subsector; see Carmignani et al., 2001), have played a key
role in the evolution of endemic richness (Bacchetta,
2006).

In addition, the Sulcitano-Iglesiente, Gennargenteo and
Supramontano sectors include several areas that were
identified as Mediterranean putative refugia (sensu Médail

& Diadema, 2009) with high endemic richness (Fenu
et al., 2010; Bacchetta et al., 2013). The less drastic cli-
mate changes on large Mediterranean islands during the
Quaternary could promote the local persistence of high
plant richness and the co-existence of distinct genetic line-
ages (Valiente Banuet et al., 2006; Medail & Diadema,
2009). The quantitative interaction graph separates,
according to their endemic flora, the south-western part of
Sardinia (Sulcitano-Iglesiente sector) from the central ter-
ritories of the Island (Gennargenteo and Supramontano
sectors). Thus, these sectors have a complex geological
history and prolonged insularity and include several puta-
tive Mediterranean refugia.

The high endemic richness in the Tavolarino subsector
deserves special attention. An anomalous species richness
on smaller islands, in comparison with larger ones, has
been identified and this phenomenon has been described
as the ‘small island effect’ (Panitsa et al, 2006). The
debate over this effect is not yet resolved (Triantis et al.,
2012), although the case of the Tavolarino subsector could
be useful to test whether the small islands deviate from the
common pattern of species—area relationship (Panitsa
et al., 20006). In addition, the carbonate substrates and the
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Fig. 3. Quantitative endemic-sector interaction web. Left bars represent sectors and right bars represent endemic taxa. Linkage width
indicates the presence of each endemic taxon in each sector. Exclusive endemic taxa of each sector (given in Table 1) were grouped and
showed using the following abbreviations: ESI (Exclusive of Sulcitano-Iglesiente sector), ECT (Exclusive of Campidanese-Turritano
sector), EGL (Exclusive of Goceano-Logudorese sector), EB (Exclusive of Baronico sector), EG (Exclusive of Gennargenteo sector)
and ES (Exclusive of Supramontano sector). Plant names are given in Appendix S1.



Downloaded by [UGR-BTCA Gral Universitaria] at 03:19 28 May 2014

Biogeography of Sardinia Island 191

island altitude, higher than the other circum-Sardinian
islands and comparable to the cliffs of Orosei Gulf, could
strongly govern endemic richness. Similarly, the Sinisico
subsector, consisting mainly of carbonate substrates,
deserves particular attention because these substrates con-
stitute an ecological island with a wide range of habitat
variability (Fenu & Bacchetta, 2008).

The definition of biogeographical units on a fine scale,
which is considered a fundamental step in biogeography
in recent decades (Hengeveld, 1999; Di Virgilio et al.,
2013), gained key support from tools such as geographical
information system (GIS). The GISs make possible the
creation of geodatabases with detailed information on
taxa distribution and other key variables in biogeographi-
cal studies, such as geology and geomorphology. More-
over, the use of different tools such as the Indval
Analysis, which enable the identification of indicator taxa
in geographical units (Casazza et al., 2008; Casazza &
Minuto, 2009), can help in biogeographical analysis.
Similarly, the bipartite network diagram, showing the
relationships among Sardinian endemic taxa and bio-
geographical sectors, used for the first time in this type of
study, may represent a powerful tool to summarize the
biogeographical scheme of a territory. These tools are a
valuable help to obtain useful information for bio-
geographical units, identifying key taxa for conservation
within the units. In fact, conservation guidelines have
been improved over recent decades by applying bio-
geographical methods and principles (Whittaker et al.,
2005). Since the identification of priorities at finer scales
is essential to ensure the implementation of conservation
measures (e.g. Brooks et al, 2006; Canadas et al,
2014), the biogeographical scheme presented here helps
to identify area-based conservation strategies in a floristic
hotspot such as Sardinia.
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